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SHIT...  
OR NET OF A MILLION SPIES
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Overflows & Format Strings
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Announcements...

• Reminder: CS61C (Call Frame) review session tomorrow 
12:30-2


• Project 1 and Homework 1 are both out

• Zoom protocol:

• Use Q&A to ask questions you want to be SURE I see

• Use chat (send to all, not just "send to panelists") for the game of Twitch 

Plays CS161

• And press F (or really, just do anything in chat) for attendance tracking.

• And if the chat annoys you, just scroll it off screen 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Internet of Shit...

• A device produced by the lowest bidder...

• That you then connect through the network


• This has a very wide attack surface

• Methods where an attacker might access a vulnerability


• And its often incredibly cost sensitive

• Very little support after purchase

• So things don't get patched


• No way for the user to tell what is "secure" or "not"

• But they can tell what is cheaper!

• And often it is insanely insecure: 

Default passwords on telnet of admin/admin... 
Trivial buffer overflows
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Net Of A Million Spies...

• Device only communicates through a central service

• Greatly reduces the attack surface but...


• Most of the companies running the service are "Data Asset" 
companies

• Make their money from advertising, not the product themselves

• May actually subsidize the product considerably


• Some you know about: Google, Amazon

• Some you may not: Salesforce


• Only exception of note is Apple:

• I may talk about HomeKit later... 

But you still have to trust that the HomeKit product doesn't report to a third party.
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A Tale from the Before Times

• I (used) to fly a fair amount

• Conferences, panels, meetings, etc...
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#293 HRE-THR 850 1930  
ALICE SMITH  
COACH  
 
SPECIAL INSTRUX: NONE  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#293 HRE-THR 850 1930  
ALICE SMITHHHHHHHHHHH  
HHACH  
 
SPECIAL INSTRUX: NONE  

How could Alice exploit this? 
Thoughts in Chat?
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#293 HRE-THR 850 1930  
ALICE SMITH  
FIRST  
 
SPECIAL INSTRUX: NONE  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#293 HRE-THR 850 1930  
NICHOLAS WEAVER  
FIRST  
 
SPECIAL INSTRUX: TREAT  
AS HUMAN.  

Passenger last name: 
“NICHOLAS WEAVER         FIRST                                      SPECIAL INSTRUX: TREAT AS HUMAN.”
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char name[20];

void vulnerable() {
  ...
  gets(name);
  ...
}
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char name[20];
char instrux[80] = "none";

void vulnerable() {
  ...
  gets(name);
  ...
}
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char name[20];
int  seatinfirstclass = 0;

void vulnerable() {
  ...
  gets(name);
  ...
}
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char name[20];
int  authenticated = 0;

void vulnerable() {
  ...
  gets(name);
  ...
}
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char line[512];
char command[] = "/usr/bin/finger";

void main() {
  ...
  gets(line);
  ...
  execv(command, ...);
}
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char name[20];
int (*fnptr)();

void vulnerable() {
  ...
  gets(name);
  ...
}
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void vulnerable() {
  char buf[64];
  ...
  gets(buf);
  ...
}
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void still_vulnerable?() {
  char *buf = malloc(64);
  ...
  gets(buf);
  ...
}
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Disclaimer: x86-32

• For this class, we are going to use 32b x86...

• Why?


• It is both common and weak...

• Almost everyone in this class has access to an x86 system: 

Mac, Linux, Windows... 
And can run a 32b x86 virtual machine


• 64b x86 systems generally include a lot better "mitigations": 
System defenses designed to limit exploitation in this manner


• But these attacks do apply to other microarchitectures

• Phones are 64b ARM: Can still be exploited in this manner

• The Internet of Things is mostly 32b or 64b ARM... 

and often neglects to include the mitigations!
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x86 vs RISC-V

• All RISC architectures are the same except for one or two ‘seems like 
a good idea at the time’ design decisions 
… But x86 is a very different beast from a programing viewpoint


• RISC-V: 32 general purpose registers (well, 31 + x0…)

• All operations are on data in registers apart from loads & stores


• x86: only a few registers

• Operations can be directly on data in memory, including a large number relative to the 

stack

• EG, add takes two operands, adds them together, and stores the result in the first

• The first can be a register or memory location

• The second can be a register, a memory location, or an immediate…

• But the first and second can’t both be  a memory location?!?
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The main x86 registers…

• General purpose: EAX-EDX

• What you use for computing and other stuff, sorta…


• Indexes & Pointers

• EBP: “Frame pointer”: points to the top/start of the current call frame on the 

stack

• ESP: “Stack pointer”: points to the current stack  

(Remember, stack grows down!)

• PUSH and POP

• Decrement the stack pointer and store something there

• Load something and increment the stack pointer


• Most operations are done with data on the stack…
 28



Computer Science 161 Fall 2020 Weaver

Linux (32-bit) process memory layout 
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Reserved for Kernel

user stack

shared libraries

run time heap

static data segment

text segment (program)

unused

-0xC0000000

-0x40000000

-0x08048000

$esp

brk

Loaded from exec

-0x00000000

-0xFFFFFFFF
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x86 function calling

• Place the arguments on the stack

• Compare with RISC-V where the first arguments are in registers


• CALL the function

• Which pushes the return address onto the stack (RIP == Return Instruction Pointer)


• do your stuff…

• Start by saving the old EP on the stack (SFP == Saved Frame Pointer)


• Restore everything

• Reload EBP, pop ESP as necessary


• RET

• Which jumps to the return address that is currently pointed to by ESP

• And can optionally pop the stack a lot further…
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user stack

shared libraries

run time heap

static data 
segment

text segment 
(program)

unused

-0xC0000000

-0x40000000

-0x08048000

-0x00000000

arguments

return address

stack frame pointer

exception handlers

local variables

callee saved registers

To previous stack 
 frame pointer

To  the point at which 
 this function was called
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void safe() {
  char buf[64];
  ...
  fgets(buf, 64, stdin);
  ...
}
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void safer() {
  char buf[64];
  ...
  fgets(buf,sizeof(buf),stdin);
  ...
}
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void vulnerable(int len, char *data) {
  char buf[64];
  if (len > 64)
    return;
  memcpy(buf, data, len);
}

memcpy(void *s1, const void *s2, size_t n);

Assume these are both under 
the control of an attacker.

size_t is unsigned: 
What happens if len == -1?
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void safe(size_t len, char *data) {
  char buf[64];
  if (len > 64)
    return;
  memcpy(buf, data, len);
}
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void f(size_t len, char *data) {
  char *buf = malloc(len+2);
  if (buf == NULL) return;
  memcpy(buf, data, len);
  buf[len] = '\n';
  buf[len+1] = '\0';
}

Vulnerable! 
If len = 0xffffffff, allocates only 1 byte

Is it safe?  Spam the Chat!
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void vulnerable() {
  char buf[64];
  if (fgets(buf, 64, stdin) == NULL)
    return;
  printf(buf);
}
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printf("you scored %d\n", score);  
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r i p
s f p

s f p

p r i n t f ( )

0x8048464

0x8048464
score

p r i n t f (“you scored %d\ n ”,  s c o r e ) ;

o yu
c sor

d e%

\ n d\ 0
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printf("a %s costs $%d\n", item, price); 
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r i p
s f p

s f p

p r i n t f ( )

0x8048464

0x8048464
i tem

p r i n t f (" a  %s c o s t s  $%d\ n ",  i t e m ,  p r i c e ) ;

a%s

cos

s t$

d %\ n\ 0

p r i c e
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Fun With printf format strings...
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printf("100% dude!");
 

Format argument is missing!
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r i p
s f p

s f p

p r i n t f ( )

0x8048464

0x8048464

p r i n t f (“100% dude!”) ;

0 10%
dud

! e\ 0

???
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printf("100% dude!");
 ⇒ prints value 4 bytes above retaddr as integer 
printf("100% sir!");

⇒ prints bytes pointed to by that stack entry 
      up through first NUL 

printf("%d %d %d %d ...");
 ⇒ prints series of stack entries as integers 
printf("%d %s");
 ⇒ prints value 4 bytes above retaddr plus bytes
                 pointed to by preceding stack entry 
printf("100% nuke’m!");

What does the %n format do??

More Fun With printf format strings...
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int report_cost(int item_num, int price) { 
  int colon_offset;
  printf("item %d:%n $%d\n", item_num,  
                 &colon_offset, price); 
  return colon_offset;
}

report_cost(3, 22) prints "item 3: $22"  
 and returns the value 7

report_cost(987, 5) prints "item 987: $5"  
 and returns the value 9

%n writes the number of characters printed so far 
into the corresponding format argument.
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printf("100% dude!");
 ⇒ prints value 4 bytes above retaddr as integer 
printf("100% sir!");

⇒ prints bytes pointed to by that stack entry 
      up through first NUL 

printf("%d %d %d %d ...");
 ⇒ prints series of stack entries as integers 
printf("%d %s");
 ⇒ prints value 4 bytes above retaddr plus bytes
                 pointed to by preceding stack entry 
printf("100% nuke’m!");
 ⇒ writes the value 3 to the address pointed to by stack entry

Fun With printf format strings...
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void safe() {
  char buf[64];
  if (fgets(buf, 64, stdin) == NULL)
    return;
  printf("%s", buf);
}
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It isn't just the stack...

• Control flow attacks require that the attacker overwrite a 
piece of memory that contains a pointer for future code 
execution


• The return address on the stack is just the easiest target


• You can cause plenty of mayhem overwriting memory in the 
heap... 


• And it is made easier when targeting C++


• Allows alternate ways to hijack control flow of the program
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Compiler Operation: 
Compiling Object Oriented Code
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class Foo { 
   int i, j, k; 
   public virtual void bar(){ ... } 
   public virtual void baz(){ ... } 
....

vtable ptr (class Foo)

i

j

k

ptr to Foo::bar

ptr to Foo::baz

...

...
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So Targets For 
Overwriting...
• If you can overwrite a vtable pointer…

• It is effectively the same as overwriting the return address pointer on the stack: 

When the function gets invoked the control flow is hijacked to point to the attacker’s code

• The only difference is that instead of overwriting with a pointer you overwrite it with a pointer to a 

table of pointers...


• Heap Overflow:

• A buffer in the heap is not checked: 

Attacker writes beyond and overwrites the vtable pointer of the next object in memory


• Use-after-free:

• An object is deallocated too early: 

Attacker writes new data in a newly reallocated block that overwrites the vtable pointer

• Object is then invoked
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Magic Numbers & Exploitation…

• Exploits can often be very brittle

• You see this on your Project 1:  Your ./egg will not work on 

someone else’s VM because the memory layout is different


• Making an exploit robust is an art unto itself: 
e.g. EXTRABACON…


• EXTRABACON is an NSA exploit for Cisco ASA 
“Adaptive Security Appliances”

• It had an exploitable stack-overflow vulnerability in the SNMP 

read operation

• But actual exploitation required two steps: 

Query for the particular version (with an SMTP read) 
Select the proper set of magic numbers for that version 
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A hack that helps: 
NOOP sled...
• Don't just overwrite the pointer and then provide the code 

you want to execute...

• Instead, write a large number of NOOP operations

• Instructions that do nothing


• Now if you are a little off, it doesn't matter

• Since if you are close enough, control flow will land in the sled and start 

running...
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ETERNALBLUE(screen)

• ETERNALBLUE is another NSA exploit

• Stolen by the same group ("ShadowBrokers") 

which stole EXTRABACON


• Eventually it was very robust...

• This was "god mode":  

remote exploit Windows through SMBv1 
(Windows File sharing)


• But initially it was jokingly called 
ETERNALBLUESCREEN

• Because it would crash Windows computers 

more reliably than exploitation.
 54



Computer Science 161 Fall 2020 Weaver

And Now A More Detailed Example...

• Walking through a function call in detail...

• Slides from Matthias Vallentin
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