
Computer Science 161 Fall 2020 Weaver

 1

SHIT...  
OR NET OF A MILLION SPIES

Computer Science 161 Fall 2020 Weaver

Overflows & Format Strings

 2

Computer Science 161 Fall 2020 Weaver

Announcements...

• Reminder: CS61C (Call Frame) review session tomorrow
12:30-2

• Project 1 and Homework 1 are both out

• Zoom protocol:

• Use Q&A to ask questions you want to be SURE I see

• Use chat (send to all, not just "send to panelists") for the game of Twitch

Plays CS161

• And press F (or really, just do anything in chat) for attendance tracking.

• And if the chat annoys you, just scroll it off screen 

 3

Computer Science 161 Fall 2020 Weaver

Internet of Shit...

• A device produced by the lowest bidder...

• That you then connect through the network

• This has a very wide attack surface

• Methods where an attacker might access a vulnerability

• And its often incredibly cost sensitive

• Very little support after purchase

• So things don't get patched

• No way for the user to tell what is "secure" or "not"

• But they can tell what is cheaper!

• And often it is insanely insecure: 

Default passwords on telnet of admin/admin... 
Trivial buffer overflows

 4

Computer Science 161 Fall 2020 Weaver

Net Of A Million Spies...

• Device only communicates through a central service

• Greatly reduces the attack surface but...

• Most of the companies running the service are "Data Asset"
companies

• Make their money from advertising, not the product themselves

• May actually subsidize the product considerably

• Some you know about: Google, Amazon

• Some you may not: Salesforce

• Only exception of note is Apple:

• I may talk about HomeKit later... 

But you still have to trust that the HomeKit product doesn't report to a third party.
 5

Computer Science 161 Fall 2020 Weaver

A Tale from the Before Times

• I (used) to fly a fair amount

• Conferences, panels, meetings, etc...

 6

Computer Science 161 Fall 2020 Weaver

 7

Computer Science 161 Fall 2020 Weaver

 8

Computer Science 161 Fall 2020 Weaver

 9

Computer Science 161 Fall 2020 Weaver

 10

#293 HRE-THR 850 1930  
ALICE SMITH  
COACH  
 
SPECIAL INSTRUX: NONE  

Computer Science 161 Fall 2020 Weaver

 11

Computer Science 161 Fall 2020 Weaver

 12

#293 HRE-THR 850 1930  
ALICE SMITHHHHHHHHHHH  
HHACH  
 
SPECIAL INSTRUX: NONE  

How could Alice exploit this?
Thoughts in Chat?

Computer Science 161 Fall 2020 Weaver

 13

Computer Science 161 Fall 2020 Weaver

 14

#293 HRE-THR 850 1930  
ALICE SMITH  
FIRST  
 
SPECIAL INSTRUX: NONE  
 

Computer Science 161 Fall 2020 Weaver

 15

#293 HRE-THR 850 1930  
NICHOLAS WEAVER  
FIRST  
 
SPECIAL INSTRUX: TREAT  
AS HUMAN.  

Passenger last name: 
“NICHOLAS WEAVER FIRST SPECIAL INSTRUX: TREAT AS HUMAN.”

Computer Science 161 Fall 2020 Weaver

 16

char name[20];

void vulnerable() {
 ...
 gets(name);
 ...
}

Computer Science 161 Fall 2020 Weaver

 17

char name[20];
char instrux[80] = "none";

void vulnerable() {
 ...
 gets(name);
 ...
}

Computer Science 161 Fall 2020 Weaver

 18

char name[20];
int seatinfirstclass = 0;

void vulnerable() {
 ...
 gets(name);
 ...
}

Computer Science 161 Fall 2020 Weaver

 19

char name[20];
int authenticated = 0;

void vulnerable() {
 ...
 gets(name);
 ...
}

Computer Science 161 Fall 2020 Weaver

 20

char line[512];
char command[] = "/usr/bin/finger";

void main() {
 ...
 gets(line);
 ...
 execv(command, ...);
}

Computer Science 161 Fall 2020 Weaver

 21

char name[20];
int (*fnptr)();

void vulnerable() {
 ...
 gets(name);
 ...
}

Computer Science 161 Fall 2020 Weaver

 22

Computer Science 161 Fall 2020 Weaver

 23

void vulnerable() {
 char buf[64];
 ...
 gets(buf);
 ...
}

Computer Science 161 Fall 2020 Weaver

 24

void still_vulnerable?() {
 char *buf = malloc(64);
 ...
 gets(buf);
 ...
}

Computer Science 161 Fall 2020 Weaver

 25

Computer Science 161 Fall 2020 Weaver

Disclaimer: x86-32

• For this class, we are going to use 32b x86...

• Why?

• It is both common and weak...

• Almost everyone in this class has access to an x86 system: 

Mac, Linux, Windows... 
And can run a 32b x86 virtual machine

• 64b x86 systems generally include a lot better "mitigations": 
System defenses designed to limit exploitation in this manner

• But these attacks do apply to other microarchitectures

• Phones are 64b ARM: Can still be exploited in this manner

• The Internet of Things is mostly 32b or 64b ARM... 

and often neglects to include the mitigations!
 26

Computer Science 161 Fall 2020 Weaver

x86 vs RISC-V

• All RISC architectures are the same except for one or two ‘seems like
a good idea at the time’ design decisions 
… But x86 is a very different beast from a programing viewpoint

• RISC-V: 32 general purpose registers (well, 31 + x0…)

• All operations are on data in registers apart from loads & stores

• x86: only a few registers

• Operations can be directly on data in memory, including a large number relative to the

stack

• EG, add takes two operands, adds them together, and stores the result in the first

• The first can be a register or memory location

• The second can be a register, a memory location, or an immediate…

• But the first and second can’t both be a memory location?!?

 27

Computer Science 161 Fall 2020 Weaver

The main x86 registers…

• General purpose: EAX-EDX

• What you use for computing and other stuff, sorta…

• Indexes & Pointers

• EBP: “Frame pointer”: points to the top/start of the current call frame on the

stack

• ESP: “Stack pointer”: points to the current stack  

(Remember, stack grows down!)

• PUSH and POP

• Decrement the stack pointer and store something there

• Load something and increment the stack pointer

• Most operations are done with data on the stack…
 28

Computer Science 161 Fall 2020 Weaver

Linux (32-bit) process memory layout

 29

Reserved for Kernel

user stack

shared libraries

run time heap

static data segment

text segment (program)

unused

-0xC0000000

-0x40000000

-0x08048000

$esp

brk

Loaded from exec

-0x00000000

-0xFFFFFFFF

Computer Science 161 Fall 2020 Weaver

x86 function calling

• Place the arguments on the stack

• Compare with RISC-V where the first arguments are in registers

• CALL the function

• Which pushes the return address onto the stack (RIP == Return Instruction Pointer)

• do your stuff…

• Start by saving the old EP on the stack (SFP == Saved Frame Pointer)

• Restore everything

• Reload EBP, pop ESP as necessary

• RET

• Which jumps to the return address that is currently pointed to by ESP

• And can optionally pop the stack a lot further…

 30

Computer Science 161 Fall 2020 Weaver

 31

user stack

shared libraries

run time heap

static data
segment

text segment
(program)

unused

-0xC0000000

-0x40000000

-0x08048000

-0x00000000

arguments

return address

stack frame pointer

exception handlers

local variables

callee saved registers

To previous stack
 frame pointer

To the point at which
 this function was called

Computer Science 161 Fall 2020 Weaver

 32

void safe() {
 char buf[64];
 ...
 fgets(buf, 64, stdin);
 ...
}

Computer Science 161 Fall 2020 Weaver

 33

void safer() {
 char buf[64];
 ...
 fgets(buf,sizeof(buf),stdin);
 ...
}

Computer Science 161 Fall 2020 Weaver

 34

void vulnerable(int len, char *data) {
 char buf[64];
 if (len > 64)
 return;
 memcpy(buf, data, len);
}

memcpy(void *s1, const void *s2, size_t n);

Assume these are both under
the control of an attacker.

size_t is unsigned: 
What happens if len == -1?

Computer Science 161 Fall 2020 Weaver

 35

void safe(size_t len, char *data) {
 char buf[64];
 if (len > 64)
 return;
 memcpy(buf, data, len);
}

Computer Science 161 Fall 2020 Weaver

 36

void f(size_t len, char *data) {
 char *buf = malloc(len+2);
 if (buf == NULL) return;
 memcpy(buf, data, len);
 buf[len] = '\n';
 buf[len+1] = '\0';
}

Vulnerable! 
If len = 0xffffffff, allocates only 1 byte

Is it safe? Spam the Chat!

Computer Science 161 Fall 2020 Weaver

 37

Computer Science 161 Fall 2020 Weaver

 38

void vulnerable() {
 char buf[64];
 if (fgets(buf, 64, stdin) == NULL)
 return;
 printf(buf);
}

Computer Science 161 Fall 2020 Weaver

 39

printf("you scored %d\n", score);

Computer Science 161 Fall 2020 Weaver

 40

r i p
s f p

s f p

p r i n t f ()

0x8048464

0x8048464
score

p r i n t f (“you scored %d\ n ”, s c o r e) ;

o yu
c sor

d e%

\ n d\ 0

Computer Science 161 Fall 2020 Weaver

 41

printf("a %s costs $%d\n", item, price);

Computer Science 161 Fall 2020 Weaver

 42

r i p
s f p

s f p

p r i n t f ()

0x8048464

0x8048464
i tem

p r i n t f (" a %s c o s t s $%d\ n ", i t e m , p r i c e) ;

a%s

cos

s t$

d %\ n\ 0

p r i c e

Computer Science 161 Fall 2020 Weaver

Fun With printf format strings...

 43

printf("100% dude!");

Format argument is missing!

Computer Science 161 Fall 2020 Weaver

 44

r i p
s f p

s f p

p r i n t f ()

0x8048464

0x8048464

p r i n t f (“100% dude!”) ;

0 10%
dud

! e\ 0

???

Computer Science 161 Fall 2020 Weaver

 45

printf("100% dude!");
 ⇒ prints value 4 bytes above retaddr as integer
printf("100% sir!");

⇒ prints bytes pointed to by that stack entry 
 up through first NUL

printf("%d %d %d %d ...");
 ⇒ prints series of stack entries as integers
printf("%d %s");
 ⇒ prints value 4 bytes above retaddr plus bytes
 pointed to by preceding stack entry
printf("100% nuke’m!");

What does the %n format do??

More Fun With printf format strings...

Computer Science 161 Fall 2020 Weaver

 46

int report_cost(int item_num, int price) { 
 int colon_offset;
 printf("item %d:%n $%d\n", item_num,  
 &colon_offset, price);
 return colon_offset;
}

report_cost(3, 22) prints "item 3: $22"  
 and returns the value 7

report_cost(987, 5) prints "item 987: $5"  
 and returns the value 9

%n writes the number of characters printed so far
into the corresponding format argument.

Computer Science 161 Fall 2020 Weaver

 47

printf("100% dude!");
 ⇒ prints value 4 bytes above retaddr as integer
printf("100% sir!");

⇒ prints bytes pointed to by that stack entry 
 up through first NUL

printf("%d %d %d %d ...");
 ⇒ prints series of stack entries as integers
printf("%d %s");
 ⇒ prints value 4 bytes above retaddr plus bytes
 pointed to by preceding stack entry
printf("100% nuke’m!");
 ⇒ writes the value 3 to the address pointed to by stack entry

Fun With printf format strings...

Computer Science 161 Fall 2020 Weaver

 48

void safe() {
 char buf[64];
 if (fgets(buf, 64, stdin) == NULL)
 return;
 printf("%s", buf);
}

Computer Science 161 Fall 2020 Weaver

It isn't just the stack...

• Control flow attacks require that the attacker overwrite a
piece of memory that contains a pointer for future code
execution

• The return address on the stack is just the easiest target

• You can cause plenty of mayhem overwriting memory in the
heap...

• And it is made easier when targeting C++

• Allows alternate ways to hijack control flow of the program

 49

Computer Science 161 Fall 2020 Weaver

Compiler Operation: 
Compiling Object Oriented Code

 50

class Foo {
 int i, j, k;
 public virtual void bar(){ ... }
 public virtual void baz(){ ... }
....

vtable ptr (class Foo)

i

j

k

ptr to Foo::bar

ptr to Foo::baz

...

...

Computer Science 161 Fall 2020 Weaver

So Targets For 
Overwriting...
• If you can overwrite a vtable pointer…

• It is effectively the same as overwriting the return address pointer on the stack: 

When the function gets invoked the control flow is hijacked to point to the attacker’s code

• The only difference is that instead of overwriting with a pointer you overwrite it with a pointer to a

table of pointers...

• Heap Overflow:

• A buffer in the heap is not checked: 

Attacker writes beyond and overwrites the vtable pointer of the next object in memory

• Use-after-free:

• An object is deallocated too early: 

Attacker writes new data in a newly reallocated block that overwrites the vtable pointer

• Object is then invoked

 51

Computer Science 161 Fall 2020 Weaver

Magic Numbers & Exploitation…

• Exploits can often be very brittle

• You see this on your Project 1: Your ./egg will not work on

someone else’s VM because the memory layout is different

• Making an exploit robust is an art unto itself:
e.g. EXTRABACON…

• EXTRABACON is an NSA exploit for Cisco ASA
“Adaptive Security Appliances”

• It had an exploitable stack-overflow vulnerability in the SNMP

read operation

• But actual exploitation required two steps: 

Query for the particular version (with an SMTP read) 
Select the proper set of magic numbers for that version

 52

Computer Science 161 Fall 2020 Weaver

A hack that helps: 
NOOP sled...
• Don't just overwrite the pointer and then provide the code

you want to execute...

• Instead, write a large number of NOOP operations

• Instructions that do nothing

• Now if you are a little off, it doesn't matter

• Since if you are close enough, control flow will land in the sled and start

running...

 53

Computer Science 161 Fall 2020 Weaver

ETERNALBLUE(screen)

• ETERNALBLUE is another NSA exploit

• Stolen by the same group ("ShadowBrokers")

which stole EXTRABACON

• Eventually it was very robust...

• This was "god mode":  

remote exploit Windows through SMBv1
(Windows File sharing)

• But initially it was jokingly called
ETERNALBLUESCREEN

• Because it would crash Windows computers

more reliably than exploitation.
 54

Computer Science 161 Fall 2020 Weaver

And Now A More Detailed Example...

• Walking through a function call in detail...

• Slides from Matthias Vallentin

 55

