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Announcements & Reminders

• Reminders on Twitch plays CS161....

• Use Q&A to ask questions

• Use chat to talk amongst yourselves

• Press "F" to pay respects...
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Stopping Memory Errors

• Language choice

• Most languages don't have the problems of C/C++/Objective C


• Mitigation/Hardening

• Make it harder to exploit memory errors 

(turning them into crashes)


• Better software development lifecycle

• "Just don't write buggy code😂"

• "Just patch your systems"
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So Why Use C/C++/Objective C?

• Professed most-common reason: performance

• One real aspect: memory allocation behavior

• When you want to allocate new memory in C/C++: 

malloc() generally takes a constant amount of time

• But this is only in general, not always: malloc may have to call the OS if it needs more memory

• So the best way to think of it is roughly-deterministic: 

just like everything else in modern performance ($s, etc)


• Compare with Java

• When you create a new object, the garbage collector may need to run, adding a 10ms or 

even 100ms pause as it cleans up memory


• But how many things do you write where this is a problem?

• Operating system code, high performance games, some embedded systems
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Other Performance: 
More of a myth...
• There is nothing intrinsic about C's lack of safety that improves 

performance...

• Instead, once you add all the checks in C needed to know your code is safe, the compiler in a 

safe language can do it for you


• Previous safe alternatives used slower models of execution

• Java focused around a JIT: distributing code in a portable fashion

• No so with go or rust


• Modern "performance programming" often involves tasks that can use 
libraries

• Python libraries that use GPUs


• Plus programmer time really matters: 
Never forget Amdahl's law applies to your time as well!
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Most Common Reason: 
Inertia & Legacy
• Why is so much iPhone development focused around Objective-C?

• C with smalltalk-style objects


• Because in the late 80s, Steve Jobs left Apple and founded NeXT 
computers

• They built some really nice (and expensive) Unix workstations

• They created their own (really nice) GUI using Objective-C


• In the late 90s, Apple had a problem...

• Their core OS was a PoS: it was a hack on top of a hack on top  

of a hack...

• Plus being driven into a ground by a soda-salesman CEO focused  

on selling to the Fortune 100 rather than the insignificant 1,000,000

• So Apple bought out NeXT and turned NeXTStep into OS-X
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And That 
Legacy Lives...
• So when Apple created the iPhone...

• They modified the core OS and environment to run on a phone


• So although there may be very little code dating back to 
1989 on your iPhone... 
Much of the programming concepts remained!


• So if you want to write apps for an iPhone...

• You commonly use Objective-C (or Swift, which is a safe & new language)


• If the old part of the code is written in X,  
new code will still be written in X!
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Alternatives: 
Java
• Java is somewhat down on performance to C due to legacy 

design decisions

• Java originally focused on compiling to an intermediate representation 

(bytecode) that could then run in the web browser

• This was a security disaster: 

Java was designed for full system programming and the browser sandbox was easy to 
break


• The bytecode itself also suffers from legacy issues

• It is a stack machine because Java was originally called Oak and designed for 

embedded use


• But for so much stuff, Java is just fine!
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Alternatives: 
Python
• Well, I hate Python 3...

• But that is a bias because they F@#)(@*# up forward compatibility and 

created a completely different language and then abandoned python 2


• But if you like it, its great for non-performance sensitive 
code


• Biggest problem is (lack) of compile-time typing: 
a lot of errors that should be caught in compile time get through to runtime


• Plus a lot of performance sensitive code (e.g. machine learning) can be 
outsourced to libraries


• Decent interface for building python wrappers to C libraries
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Alternatives: 
JavaScript...
• You wonder why the Slack desktop app takes so much 

memory?

• Because it is an app running in "Electron": 

Literally a web browser and an application in JavaScript...

• So it ends up with the web security issues rather than memory safety issues


• Similarly, node.js to run Javascript for the server side

• Biggest problems are ecological

• The amount of S@)@#)(* imported dependencies is a massive security 

vulnerability


• Plus it is slow and not a very pleasant language to write in
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Modern Alternative: 
Go
• Go is statically type-safe, garbage-collected but C-looking 

language

• Big party trick: very good concurrency model for taking advantage of multicore 

machines

• Also a reasonably easy learning curve and a type system that (modulo a couple 

of annoyances) is not intrusive but good at catching bugs

• Plus good testing infrastructure, code coverage tools, documentation, git integration, all 

built into the development framework


• Really nice for writing server architectures

• Can take advantage of multicore machines...

• So even if single threaded code was slower, your throughput can be much higher
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Modern Alternative: 
Rust
• Rust is a type safe but not garbage collected language

• Instead it uses reference counting: 

C++ "Smart Pointer" shared_ptr idiom


• Reference counting has every object with a counter...

• Add a new pointer pointing to the object, increment the counter

• Change the pointer to point someplace else, decrement the counter

• When counter == 0, delete the object


+ Gives the mostly deterministic-ish malloc behavior of C

- Can have memory leaks: 

Cycles of pointers will never be free-d
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More On Rust

• A very good interface to C/C++

• Primary driver is Mozilla, looking at rewriting a large amount of the browser into a 

safe language


• Very good performance

• By the time your C code has enough runtime checks to be actually safe, it really 

should be no faster than Rust


• Very steep learning curve

• I've not learned it myself: 

I don't have a need yet

• But if I build drone board mk-2 I will: 

Rust code for the realtime core running on a ARM coprocessor
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But Suppose You Don’t Want

To Reprogram Things?  What Then?
• A large back-and-forth arms race trying to prevent memory errors 

from being exploitable for code injection

• An attacker can still use them to crash the program

• An attempt at defense-in-depth


• Non-Executable Pages

• Stack Canaries

• Address-Space-Layout-Randomization

• Pointer Integrity in ARM

• And some R&D down the pipe

• E.g. selfrando
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General Theme: 
Mitigations...
• Idea is to do "cheap things" that will make it so exploits become 

crashes

• Attackers can still crash our system (Denial of Service), just can't execute arbitrary code


• Mitigations are often an arms race...

• A mitigation is discovered...

• And then the bad guys find a way around!


• Mitigations often stack!

• Mitigations can create synergistic protection: 

Force multiple vulnerabilities to enable successful exploitation


• Mitigations may not be free...

• There are costs to them
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Reminder: 
32b vs 64b processors
• In a 32b processor: integers and pointers are 32b

• Can address at most 232 bytes of memory

• Pages are usually 8 kB: 

So only 218 pages


• In a 64b processor: integers and pointers are 64b

• But 264 bytes of memory is lunacy...   

So usually only able to address about 242 bytes or so

• Leaves 22b of each pointer as effectively unused

• But still allows 228 pages


• This becomes very important later in some mitigations!
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Simplest Mitigation: 
Non-Executable Memory (W^X)
• The page table allows us to say whether memory is writeable 

and executable as separate bits

• So lets take advantage of it


• When a program is loaded

• Code pages are set read-only

• Data pages are marked as non-executable


• Programs must specifically ask for executable & writeable pages

• Things like JavaScript runtime compilers


• Effectively 0 overhead!
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Counter-Mitigation: 
Don't Inject Code, Use Existing Code!
• A running program has a lot of code that you 

could use...

• And a function has no way of knowing how control flow 

got to it!


• Simplest version: 
Return into libc

• call execv("/bin/sh", ["/bin/sh", null]) 

• So overwrite RIP:

• With the address of execv


• And above it write the stuff needed to call 
execv

• And now a shell starts running
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Upping the Voodoo: 
The ROP chain...
• But what if there isn't a single function...

• It doesn't matter, there are enough fragments of code around... 

(commonly known as "gadgets")


• So recall the stack frame:

• When a function exits, it pops the stack by a known amount and then returns to 

the address specified by the RIP


• So don't just overwrite the RIP...

• Write a chain of returns onto the stack that take pieces out of the existing code


• Voila, you now have code execution without actually adding 
any code to execute!
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But Of Course: 
You don't need to do the work!
• The lazy-hacker idea:

• Somebody else did the deep voodoo already.   

I can just google for "ROP compiler" and download an existing tool


• Tools democratize things for attacker's:

• Yesterday's Ph.D. thesis or academic paper is today's Intelligence Agency 

tool and tomorrow's Script Kiddie download


• So the TL;DR:

• Non-executable pages is now an annoyance, not a serious barrier: 

If you have executable pages, your life is easier as an attacker, but it isn't 
that much easier
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Stack Canaries…

• Goal is to protect the return pointer from 
being overwritten by a stack buffer…


• When the program starts up, create a 
random value


• The “stack canary”


• When starting a function, write it just 
below the saved frame pointer


• When returning in a function

• First check the canary against the stored value
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Stack Canary Overhead...

• May require enabling an optional compiler flag...

• So of course it is commonly not done!


• Requires a memory load & store on every function entrance

• Highly cacheable so basically only 4 instructions on a typical RISC: 

Load address of canary (2 instructions) 
Load canary value into register 
Store canary value onto stack


• Requires 2 memory loads and a (probably) not taken branch

• So 5 instructions on a typical RISC: 

Load address 
Load canary value 
Load canary off stack 
BNE (mark as probably-not-taken if you can)
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So example code...

• la t0 canary # Reminder, turns into two  
             # instructions  
lw t0 0(t0)  
sw t0 x(sp)  # four below where ra got stored  
             # if we don't bother saving the frame pointer 

• la t0 canary  
lw t0 0(t0)  
lw t1 x(sp)  
bne t0 t1 dead_canary  
             # Make sure this is a forward branch: 
             # So CPU assumes it won't be taken 

• Note also generally sequential: 
only parallelism present is in loading the canary from both the stack and storage
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Counter-Mitigation: 
How To (Not) Kill the Canary…
• Find out what the canary is!

• An information leak elsewhere that dumps the stack

• Now can overwrite the canary with itself…


• Write around the canary

• Format string vulnerabilities


• Overflow in the heap, or a C++ object's vtable 
on the stack


• QED: Bypassable but raises the bar

• A simple stack overflow doesn’t work anymore: 

Need something a bit more robust


• It requires a compiler flag to enable on Linux, but…

• THERE IS NO EXCUSE NOT TO HAVE THIS ENABLED!!!   

I'M LOOKING AT YOU CISCO ASA (Active Security Appliance)!
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And Canary Entropy…

• On a 32b architecture the canary is a 32b value

• It is 64b on x86-64


• One byte of the canary is always x0

• Since some buffer overflows can’t include null bytes:  

e.g. if the vulnerability is in a bad call to strcpy


• But this means you can (possibly) brute-force the canary if it is a 
local program (e.g. if you turned on stack canaries for question 1 
of project 1) although you probably can't if it is a remote server

• It would only requires an expected 224 tries or so!

• Think of this as “you need to try ~16 million times”: 

210 ~= 103
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Things to Remember on 
Brute Force...
• Brute force: just simply try every possibility

• Or if its a different random # each time, just always try the same number


• Even the smallest timeout goes along way:

• If you can try 10,000 per second, trying 220 possibilities takes less than 2 minutes

• If you can only try 10 per second, it takes a day and a half

• And if 10 failures causes a 10 minute timeout... 

Forgettaboutit!


• Exponentials matter

• If it take 1 minute to try 220, it will take 16 hours to try 230

• And 2 years to try 240!
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Pointer Protection: 
Modern 64b ARM 8.3 Pointer Authentication
• https://www.qualcomm.com/media/documents/files/whitepaper-pointer-

authentication-on-armv8-3.pdf

• Idea: Since our pointers are 64b but we are only using say 42b of them...

• Lets use that upper 22b to encrypt/protect pointers of various types!


• New instructions:

• PAC -> Set Pointer Authentication Code

• Sets the upper bits with a cryptographic checksum 


• AUT -> Check and Remove Pointer Authentication Code

• If the check is invalid, it will instead put an error in the checksum space: 

If the pointer is dereferenced it causes an error


• XAUT -> Strip PAC without checking


• Instructions are in NO-OP space if the processor doesn't support them
 27
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Plus some non-NOOP higher performance options

• When you know you will be running on a processor which 
supports it

• check & return: 

Check the return address has a valid PAC and if so, return

• check & load: 

Check the PAC and if so, load the pointer

• check & branch: 

Check the PAC and if so, do a jump-and-link to that pointer


• Allows the complete elimination of the overhead for checking!

• Well, cheat: You cause it to trigger an exception on instruction committing and 

just assume the pointer is valid to start with...
 28



Computer Science 161 Fall 2019 Weaver

How To Use...

• There are 5 secrets for pointer protection

• These contain random 128b secrets that are used to authenticate the pointer: 

Provided by the OS

• Two for data (DA/DB), two for instruction (IA/IB), and one general purpose (GA)


• These are contained in processor registers,  
and are not readable to the program itself! 
• Key property: An information leakage vulnerability can't defeat this protection on a user-level 

program

• But it could on a kernel level program: 

Solution would be to also have a secret random to the CPU that is included but non readable


• Other workaround: find a vulnerability that can trick the program into 
authenticating new pointers it shouldn't, or be able to reuse authenticated 
pointers in another context
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So in practice

• The PAC is a function of the pointer, an additional register (or 
register 0) and the hidden secret

• PACIA x30 sp  

AUTIA x30 sp  
Protect/Authenticate x30 as a function of x30, sp, and the secret data associated with 
the Instruction A context (x30 is the default link register for ARM == ra in RISC-V)


• Thanks to crypto-magic we will get to later, the PAC's "look 
random"

• Changing a single bit of anything should result in something looking totally different 

and random


• So to guess a 22 bit PAC would be 1 in 4M odds.
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So Cheaper Stack Canaries...

• On function entry: Create the PAC for the return address

• Using the stack pointer as the context itself: 

This means the return address can't even be moved


• On function exit: Check & return as normal

• With backwards compatibility: only 2 instructions

• PACIA on function start, AUTIA on function end


• Without backwards compatibility: only 1 instruction!

• Just the PACIA on function start and a check & return on exit

• Saves 8 instructions... Or >85%!


• Only 22 bits of entropy but...

• If you get more than a few failures, just keep the program dead!
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Or Protecting vtable pointers...

• When you allocate a new C++ object...

• Protect the vtable pointer with a context and register 0: 

One additional instruction when calling new()

• Then have the vtable itself live in read-only space


• Now when calling a virtual function...

• Check & Load the vtable pointer (RISC-V like pseudocode): 

eg, if the object pointer is in s0, the vtable pointer is at the start of s0... 
LDRAA t0 0(s0) # Load 0 + s0, authenticated with data A 
LW    t0 X(t0) # X == the specific function to call 
JALR  t0       # Actually call it 

• Now you can't overwrite a C++ object's vtable pointer to something else without 
either being very lucky, finding a separate vulnerability, or replacing with another valid 
pointer that you acquire... 
And the overhead is literally nothing!

• Apart from you need to recompile and using the latest ARM silicon, that is
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Probably the biggest benefit for Apple going to ARM

• MacOSX ARM will be able to assume PAC support!

• Since it is Apple A12 or newer processors only


• Can therefore use the more efficient primitives:

• Check & Branch Register, Check & Load, Check & Return  

which all eliminate the instruction needed in a separate check

• Usable in both the kernel and user space: 

Acts to harden both applications and the underlying OS


• x86 has nothing like this in the pipeline!
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Stretch Break!

• A quick breather for everyone!
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Remember, programs are dynamically loaded...

• When you start a program...

• Only then are things linked to the dynamic libraries


• So you are already going through all this code and 
changing references


• Which means, why should it always be the same?


• So idea:  Lets randomly relocate pieces

• Start the stack & heap at random locations

• Place the code in random locations


• Random generally being on page boundaries
 35
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Address Space Layout Randomization 
(ASLR)
• Randomly relocate everything:

• Every library, the start of the stack & heap, etc…

• With 64b of space you have lots of entropy: 228 possible pages 

• Everything needs to be relocatable anyway: 

Modern systems use relocatable code and link at runtime

• 32b?  Not-so-much, <218 possibilities because you keep to page boundaries


• Now anything requiring knowing the address of code pointers 
(e.g. your ROP chain) is highly likely to fail


• Bonus: effectively no overhead!

• You are doing dynamic linking and relocation anyway, so why not take advantage of 

it?
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Counter-Mitigation: 
Find An Information Leak...
• A separate vulnerability that reveals the contents of 

memory

• Often only a single pointer is sufficient!

• EG, the address of a vtable for an object of a known type: 

tells you the location of that library in memory

• Or the return address when you know where in the code the call is coming 

from


• This is sufficient to undo the randomization
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Defense In Depth in Practice: 
Attacker Requirements...
• Attacker first needs to discover a way to read memory

• Just a single pointer to a known library will do, however

• The return address off the stack is often a great candidate

• Or a vtable pointer for an object of a known type


• Armed with this, the attacker now can create a ROP chain

• Since the attacker has a copy of the library of their own and has already passed 

it through a ROP compiler, it just needs to know the starting point for the library


• Now the attacker needs to write memory

• Writes the ROP chain and overwrites a control flow pointer... 

But not the stack unless the information leak also told you the canary
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These Defenses-In-Depth in Practice...

• Apple iOS uses ASLR in the kernel and userspace, W^X whenever possible

• All applications are sandboxed to limit their damage: The kernel is the TCB


• The "Trident" exploit was used by a spyware vendor, the NSO group, to 
exploit iPhones of targets


• So to remotely exploit an iPhone, the NSO group's exploit had to...

• Exploit Safari with a memory corruption vulnerability

• Gains remote code execution within the sandbox:  

write to a R/W/X page as part of the JavaScript JIT

• Exploit a vulnerability to read a section of the kernel stack

• Exploit a vulnerability in the kernel to enable code execution


• https://info.lookout.com/rs/051-ESQ-475/images/pegasus-exploits-
technical-details.pdf
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Coming Down The Pipe: 
Selfrando...
• Don't just randomize the location of all libraries...

• Randomize the location of every function within the library!

• Slows down program loading considerably, unlike ASLR


• It works, but...

• To construct a ROP chain you may need more addresses, but...

• If you have an arbitrary read primitive, you can get that, it is just more tedious


• Personal bet: doubt it will be widely deployed

• Too much overhead on program startup

 40



Computer Science 161 Fall 2019 Weaver

But Of Course: 
The Internet of Shit...
• These mitigations often require doing something

• Enabling ASLR and W^X protection

• Compiling with stack canaries on


• If the default is "off", the default will be chosen

• Many ?most? Internet of Shit devices don't enable even the most basic 

mitigations

• Perhaps there needs to be liability?


• Even major vendors such as CISCO's Advanced Security Appliance:

• NO stack canaries

• NO non-executable stack

• NO ALSR

• Yes to easy exploitation by the NSA
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Why does software have vulnerabilities?

• Programmers are humans. 
And humans make mistakes.


• Use tools 

• Programmers often aren’t security-aware.

• Learn about common types of security flaws. 

• Programming languages aren’t designed well 
for security.


• Use better languages (Java, Python, …).
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Testing for Software Security Issues

• What makes testing a program for security problems difficult?

• We need to test for the absence of something


• Security is a negative property!

• “nothing bad happens, even in really unusual circumstances”


• Normal inputs rarely stress security-vulnerable code


• How can we test more thoroughly?

• Random inputs (fuzz testing)

• Mutation

• Spec-driven

• Use tools like Valgrind

• Test corner cases


• How do we tell when we’ve found a problem?

• Crash or other deviant behavior


• How do we tell that we’ve tested enough?

• Hard: but code-coverage tools can help

 43
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Working Towards Secure Systems

• Along with securing individual components, we need to 
keep them up to date …


• What’s hard about patching?

• Can require restarting production systems

• Can break crucial functionality

 44
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Working Towards Secure Systems

• Along with securing individual components, we need to 
keep them up to date …


• What’s hard about patching?

• Can require restarting production systems

• Can break crucial functionality

• Management burden:

• It never stops (the “patch treadmill”) …
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Working Towards Secure Systems

• Along with securing individual components, we need to keep them up 
to date …


• What’s hard about patching?

• Can require restarting production systems

• Can break crucial functionality

• Management burden:

• It never stops (the “patch treadmill”) …

• … and can be difficult to track just what’s needed where


• Other (complementary) approaches?

• Vulnerability scanning: probe your systems/networks for known flaws

• Penetration testing (“pen-testing”): pay someone to break into your systems …

• … provided they take excellent notes about how they did it!
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Some Approaches for 
Building Secure Software/Systems
• Run-time checks

• Automatic bounds-checking (overhead)

• What do you do if check fails?  Probably controlled crash...


• Address randomization

• Make it hard for attacker to determine layout

• But they might get lucky / sneaky


• Non-executable stack, heap

• May break legacy code

• See also Return-Oriented Programming (ROP)


• Monitor code for run-time misbehavior

• E.g., illegal calling sequences

• But again: what do you if detected?
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Approaches for Secure Software, con’t

• Program in checks / “defensive programming”

• E.g., check for null pointer even though sure pointer will be valid

• Relies on programmer discipline


• Use safe libraries

• E.g. strlcpy, not strcpy; snprintf, not sprintf

• Relies on discipline or tools …


• Bug-finding tools

• Excellent resource as long as not many false positives


• Code review

• Can be very effective … but expensive
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Approaches for Secure Software, con’t

• Use a safe language

• E.g., Java, Python, C#, Go, Rust

• Safe = memory safety, strong typing, hardened libraries

• Installed base?  Programmer base?  Performance?


• Structure user input

• Constrain how untrusted sources can interact with the system

• Really key later when we get to SQL injection...


• Perhaps by implementing a reference monitor


• Contain potential damage

• E.g., run system components in jails or VMs

• Think about privilege separation
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Real World Security: Securing your cellphone...

Look on the back:
• Does it say "iPhone"?

• Keep it up to date and be happy


• Does it say "Pixel"?

• Keep it up to date and be happy


• Does it say anything else?

• Toss it in the trash and buy an  

iPhone SE or a Pixel 4a


• Why?  The Android Patch Model...

• "Imagine if your Windows update needed to be  

approved by Intel, Dell, and Comcast...   
And none of them cared or had a reason to care"


• (Note: Google stopped updating the public dashboard that provided the great pie-chart, 
which is why this is a 2019 version in the pie chart)
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A Real World Exploitation Example: 
Exploit on Safari
• This was discovered about 2 year ago: 

https://blog.ret2.io/2018/07/11/pwn2own-2018-jsc-exploit/

• But the theme of how this work is quite common: 

Any use-after-free in Javascript where you can do this to an arbitrary object will usually 
target arrays


• Basic idea: a race condition can enable use-after-free in the 
JavaScript interpreter

• And the attacker's code is in JavaScript running on the target browser


• Use to create limited read/write primitive...

• To create arbitrary read/write primitive...

• To create binary code execution!
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Key Insight #1: 
JavaScript Arrays...
• JavaScript arrays are length-checked

• So you can't read past the end of the array


• But if we allocate a bunch of arrays...

• And they are all still being used...

• But the runtime has a use-after-free error that allows us to reuse the memory as 

something else...

• We can overwrite the length field in the array specifier!

• Try this a whole bunch of times until successful (since it is probably a race condition to 

create the use-after-free condition)


• This gets a relative read/write primitive

• We have a JavaScript array that can read/write a long hunk of memory including other 

JavaScript objects
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Key Insight #2: 
JavaScript TypedArray objects
• A way for JavaScript to have high performance access to other 

parts of memory

• Used for video, audio, etc... 

Runtime can say "Here, JavaScript, this is a fixed blob of memory for you to play with"

• Consists of a pointer to non-JavaScript memory and a length field


• So once we can read/write to a hunk of memory containing other 
JavaScript objects...

• Lets take one of those objects and rewrite it so the runtime thinks it is a TypedArray 

object: 
Gives us a pointer we can overwrite to anywhere in memory


• Now we can arbitrarily write & read memory
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Key Insight #3: 
Why is JavaScript not glacially slow?
• Because JavaScript code is dynamically compiled into 

machine code!

• So there exist pages in memory for this code...

• That are set as both writeable and executable!


• So just find one of them...

• Create & run JavaScript functions, follow the pointers, and there you go!


• Now we can write assembly...  Start it running... 
And we've won!
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Of course... 
Now you have to exit the sandbox!
• https://blog.ret2.io/2018/07/25/pwn2own-2018-safari-

sandbox/

• The Safari renderer is running in its own limited-authority 

process

• With a white-list of external resources its now allowed to access


• So find a vulnerability in one of those external resources

• Which in the Mac case is the "window server" that handles the drawing and 

has a wide attack surface
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