
Computer Science 161 Fall 2020 Weaver

 1

Cryptography is nightmare magic
math that cares what kind of pen
you use -@swiftonsecurity

Computer Science 161 Fall 2020 Weaver

Finish Up Software 
Security &  
Crypto 1

 2

Computer Science 161 Fall 2020 Weaver

Announcements & Reminders

• Reminders on the chat....

• Use Q&A to ask questions

• Use chat to talk amongst yourselves: 

be sure to send to ALL not just "send to panelists"

• Just say SOMETHING, SOMETIME in chat for attendance tracking

• During the short break...

• Those who still want partners, lets use the chat to find them

• Homework 1 due tomorrow at 11:59 PM PDT

• No late homework accepted, but you do get one homework drop

 3

Computer Science 161 Fall 2020 Weaver

Why does software have vulnerabilities?

• Programmers are humans. 
And humans make mistakes.

• Use tools 

• Programmers often aren’t security-aware.

• Learn about common types of security flaws. 

• Programming languages aren’t designed well
for security.

• Use better languages (Java, Python, …).
 4

Computer Science 161 Fall 2020 Weaver

Testing for Software Security Issues

• What makes testing a program for security problems difficult?

• We need to test for the absence of something

• Security is a negative property!

• “nothing bad happens, even in really unusual circumstances”

• Normal inputs rarely stress security-vulnerable code

• How can we test more thoroughly?

• Random inputs (fuzz testing)

• Mutation

• Spec-driven

• Use tools like Valgrind

• Test corner cases

• How do we tell when we’ve found a problem?

• Crash or other deviant behavior

• How do we tell that we’ve tested enough?

• Hard: but code-coverage tools can help

 5

Laura 
(X-23): 

Disney's  
BEST 

Princess!

Computer Science 161 Fall 2020 Weaver

Working Towards Secure Systems

• Along with securing individual components, we need to
keep them up to date …

• What’s hard about patching?

• Can require restarting production systems

• Can break crucial functionality

 6

Computer Science 161 Fall 2020 Weaver

 7

Computer Science 161 Fall 2020 Weaver

Working Towards Secure Systems

• Along with securing individual components, we need to
keep them up to date …

• What’s hard about patching?

• Can require restarting production systems

• Can break crucial functionality

• Management burden:

• It never stops (the “patch treadmill”) …

 8

Computer Science 161 Fall 2020 Weaver

 9

Computer Science 161 Fall 2020 Weaver

Working Towards Secure Systems

• Along with securing individual components, we need to keep them up
to date …

• What’s hard about patching?

• Can require restarting production systems

• Can break crucial functionality

• Management burden:

• It never stops (the “patch treadmill”) …

• … and can be difficult to track just what’s needed where

• Other (complementary) approaches?

• Vulnerability scanning: probe your systems/networks for known flaws

• Penetration testing (“pen-testing”): pay someone to break into your systems …

• … provided they take excellent notes about how they did it!

 10

Computer Science 161 Fall 2020 Weaver

 11

Computer Science 161 Fall 2020 Weaver

Some Approaches for 
Building Secure Software/Systems: Use Mitigations!
• Run-time checks

• Automatic bounds-checking (overhead)

• What do you do if check fails? Probably controlled crash...

• Address randomization

• Make it hard for attacker to determine layout

• But they might get lucky / sneaky

• Non-executable stack, heap

• May break legacy code

• See also Return-Oriented Programming (ROP)

• Monitor code for run-time misbehavior

• E.g., illegal calling sequences

• But again: what do you if detected?

 12

Computer Science 161 Fall 2020 Weaver

Approaches for Secure Software, con’t

• Program in checks / “defensive programming”

• E.g., check for null pointer even though sure pointer will be valid

• Relies on programmer discipline

• Use safe libraries

• E.g. strlcpy, not strcpy; snprintf, not sprintf

• Relies on discipline or tools …

• Bug-finding tools

• Excellent resource as long as not many false positives

• Code review

• Can be very effective … but expensive

 13

Computer Science 161 Fall 2020 Weaver

Approaches for Secure Software, con’t

• Use a safe language

• E.g., Java, Python, C#, Go, Rust

• Safe = memory safety, strong typing, hardened libraries

• Installed base? Programmer base? Legacy? Performance?

• Structure user input

• Constrain how untrusted sources can interact with the system

• Really key later when we get to SQL injection...

• Perhaps by implementing a reference monitor

• Contain potential damage

• E.g., run system components in jails or VMs

• Think about privilege separation

 14

Computer Science 161 Fall 2020 Weaver

Real World Security: Securing your cellphone...

Look on the back:
• Does it say "iPhone"?

• Keep it up to date and be happy

• Does it say "Pixel"?

• Keep it up to date and be happy

• Does it say anything else?

• Toss it in the trash and buy an  

iPhone SE or a Pixel 4a

• Why? The Android Patch Model...

• "Imagine if your Windows update needed to be  

approved by Intel, Dell, and Comcast...  
And none of them cared or had a reason to care"

• (Note: Google stopped updating the public dashboard that provided the great pie-chart, 
which is why this is a 2019 version in the pie chart)

 15

Computer Science 161 Fall 2020 Weaver

A Real World Exploitation Example: 
Exploit on Safari
• This was discovered about 2 year ago: 

https://blog.ret2.io/2018/07/11/pwn2own-2018-jsc-exploit/

• But the theme of how this work is quite common: 

Any use-after-free in Javascript where you can do this to an arbitrary object will usually
target arrays

• Basic idea: a race condition can enable use-after-free in the
JavaScript interpreter

• And the attacker's code is in JavaScript running on the target browser

• Use to create limited read/write primitive...

• To create arbitrary read/write primitive...

• To create binary code execution!

 16

https://blog.ret2.io/2018/07/11/pwn2own-2018-jsc-exploit/

Computer Science 161 Fall 2020 Weaver

Key Insight #1: 
JavaScript Arrays...
• JavaScript arrays are length-checked

• So you can't read past the end of the array

• But if we allocate a bunch of arrays...

• And they are all still being used...

• But the runtime has a use-after-free error that allows us to reuse the memory as

something else...

• We can overwrite the length field in the array specifier!

• Try this a whole bunch of times until successful (since it is probably a race condition to

create the use-after-free condition)

• This gets a relative read/write primitive

• We have a JavaScript array that can read/write a long hunk of memory including other

JavaScript objects
 17

JavaScript Array JavaScript Integer

Length Value

Data

Data

Computer Science 161 Fall 2020 Weaver

Key Insight #2: 
JavaScript TypedArray objects
• A way for JavaScript to have high  

performance access to other  
parts of memory

• Used for video, audio, etc... 

Runtime can say "Here, JavaScript, this is a fixed blob of memory for you to play with"

• Consists of a pointer to non-JavaScript memory and a length field

• So once we can read/write to a hunk of memory containing other
JavaScript objects...

• Lets take one of those objects and rewrite it so the runtime thinks it is a TypedArray object: 

Now we can both adjust the pointer and the length

• Now we can arbitrarily write & read memory using JavaScript!
 18

JavaScript TypedArray

Length

Pointer to elsewhere

Computer Science 161 Fall 2020 Weaver

Key Insight #3: 
Why is JavaScript not glacially slow?
• Because JavaScript code is dynamically compiled into

machine code!

• So there exist pages in memory for this code...

• That are set as both writeable and executable!

• So just find one of them...

• Create & run JavaScript functions, follow the pointers, and there you go!

• Now we can write assembly... Start it running... 
And we've won! Full arbitrary code execution!

 19

Computer Science 161 Fall 2020 Weaver

Of course... 
Now you have to exit the sandbox!
• https://blog.ret2.io/2018/07/25/pwn2own-2018-safari-

sandbox/

• The Safari renderer is running in its own limited-authority

process

• With a white-list of external resources its now allowed to access

• So find a vulnerability in one of those external resources

• Which in the Mac case is the "window server" that handles the drawing and

has a wide attack surface

 20

https://blog.ret2.io/2018/07/25/pwn2own-2018-safari-sandbox/
https://blog.ret2.io/2018/07/25/pwn2own-2018-safari-sandbox/

Computer Science 161 Fall 2020 Weaver

Cryptography: 
Philosophy...
• This part of the class is really don't try this at home

• It is incredibly easy to screw this stuff up

• It isn't just a matter of making encryption algorithms...

• Unless your name is David Wagner or Ralcua Popa, your crypto is broken!

• It isn't just a matter of coding good algorithms...

• Although just writing 100% correct code normally is hard enough!

• There is all sorts of deep voodoo that, 
when you screw up your security breaks

• EG, bad random number generators, side channel  

attacks, reusing one-use-only items, replay attacks,  
downgrade attacks, you name it...

 21

Computer Science 161 Fall 2020 Weaver

LET ME REITERATE!!! 
DON'T DO THIS AT HOME!!!!
• This summer, 61A did a custom exam tool

• It would encrypt several python files for each student

• Every student got a different exam

• Written by a student who took CS161 already!!! With Me! WITH THESE WARNINGS!!!!

• Yet I failed...

• Each exam question was supposed to take 20 minutes

• So they would release the key for "question 1" to everyone... 

Then question 2...

• Everyone had the same key but a different question

• They used a "secure" algorithm... 
In an insecure way!

• Breaking this will be a late-semester lab2

• And we don't know if it got broken

• One detected student claimed there was a leakage of the exam before  

the start
 22

Computer Science 161 Fall 2020 Weaver

Three main goals

• Confidentiality: preventing adversaries from reading our
private data

• Data = message or document

• Integrity: preventing attackers from altering our data

• Data itself might or might not be private

• Authentication: proving who created a given message or
document

• Generally implies/requires integrity

 23

Computer Science 161 Fall 2020 Weaver

Special guests

• Alice (sender of messages)

• Bob (receiver of messages)

• The attackers

• Eve: “eavesdropper”

• Mallory: “manipulator”

 24

Eve

Computer Science 161 Fall 2020 Weaver

 25

Mi: ith message
of plaintext

Alice Bob

Eve

E(Mi, K) Ci: ith message
of ciphertext D(Ci, K)

K K

Ci

Mi

Mi?

E(Mi, K) and D(Ci, K) are
inverses for the same K

“Symmetric key encryption”

Confidentiality

Computer Science 161 Fall 2020 Weaver

The Ideal Contest

• Attacker’s goal: any knowledge of Mi beyond an upper
bound on its length

• Slightly better than 50% probability at guessing a single bit: attacker wins!

• Any notion of how Mi relates to Mj: attacker wins!

• Defender’s goal: ensure attacker has no reason to think any
M' ∈ {0,1}n is more likely than any other

• (for Mi of length n)

 26

Computer Science 161 Fall 2020 Weaver

Eve’s Capabilities/Foreknowledge

• No knowledge of K

• We assume K is selected by a truly random process

• For b-bit key, any K ∈ {0,1}b is equally likely

• Recognition of success: Eve can generally tell if she has correctly
and fully recovered Mi

• But: Eve cannot recognize anything about partial solutions, such as whether she has

correctly identified a particular bit in Mi

• There are some attacks where Eve can guess and verify: 

Often a side-channel using a "decryption oracle": fooling the server into trying & failing 
with the nature of different failures telling Eve whether she guessed right

• Does not apply to scenarios where Eve exhaustively examines every possible Mi' ∈
{0,1}n

 27

Computer Science 161 Fall 2020 Weaver

Eve’s Available Information

1.Ciphertext-only attack:

• Eve gets to see every instance of Ci

• Variant: Eve may also have partial information about Mi

• “It’s probably English text”

• Bob is Alice’s stockbroker, so it’s either “Buy!” or “Sell”

2.Known plaintext:

• Eve knows part of Mi and/or entire other Mjs

• How could this happen?

• Encrypted HTTP request: starts with “GET”

• Eve sees earlier message she knows Alice will send to Bob

• Alice transmits in the clear and then resends encrypted

• Alex the Nazi always transmits the weather report at the 

same time of day, with the word "Wetter" in a known position
 28

Computer Science 161 Fall 2020 Weaver

Eve’s Available Information, con’t

3.Chosen plaintext

• Eve gets Alice to send Mj’s of Eve’s choosing

• How can this happen?

• E.g. Eve sends Alice an email spoofed from Alice’s boss saying “Please securely forward this to Bob”

• E.g. Eve has some JavaScript running in Alice's web browser that is contacting Bob's TLS web server

4.Chosen ciphertext:

• Eve tricks Bob into decrypting some Cj' of her  

choice and he reveals something about the result

• How could this happen?

• E.g. repeatedly send ciphertext to a web server that will  

send back different-sized messages depending on whether  
ciphertext decrypts into something well-formatted

• Or: measure how long it takes Bob to decrypt & validate
 29

Computer Science 161 Fall 2020 Weaver

Eve’s Available Information, con’t

5.Combinations of the above

• Ideally, we’d like to defend against this last, the most

powerful attacker

• And: we can!, so we’ll mainly focus on this attacker when

discussing different considerations

 30

Computer Science 161 Fall 2020 Weaver

Independence Under Chosen Plaintext Attack  
game: IND-CPA
• Eve is interacting with an encryption "Oracle"

• Oracle has an unknown random key k

• Eve can provide two separate chosen plaintexts of the same
length

• Oracle will randomly select one to encrypt with the unknown key

• The game can repeat, with the oracle using the same key...

• Goal of Eve is to have a better than random chance of
guessing which plaintext the oracle selected

• Variations involve the Oracle always selecting either the first or the second
record

 31

Computer Science 161 Fall 2020 Weaver

Designing Ciphers

• Clearly, the whole trick is in the design of E(M,K) and D(C,K)

• One very simple approach: 
	E(M,K) = ROTK(M); D(C,K) = ROT-K(C) 
i.e., take each letter in M and “rotate” it K positions (with wrap-around)
through the alphabet

• E.g., Mi = “DOG”, K = 3 
 Ci = E(Mi,K) = ROT3(“DOG”) = “GRJ” 
 D(Ci,K) = ROT-3(“GRJ”) = “DOG”

• “Caesar cipher”

• "This message has been encrypted twice by ROT-13 for 

your protection"
 32

Computer Science 161 Fall 2020 Weaver

Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”

 33

Computer Science 161 Fall 2020 Weaver

Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”

• Deduction:

• Analyze letter frequencies (“ETAOIN SHRDLU”)

• Known plaintext / guess possible words & confirm

• E.g. “JCKN ECGUCT” =?

 34

Computer Science 161 Fall 2020 Weaver

Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”

• Deduction:

• Analyze letter frequencies (“ETAOIN SHRDLU”)

• Known plaintext / guess possible words & confirm

• E.g. “JCKN ECGUCT” =? “HAIL CAESAR”

 35

Computer Science 161 Fall 2020 Weaver

Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”

• Deduction:

• Analyze letter frequencies (“ETAOIN SHRDLU”)

• Known plaintext / guess possible words & confirm

• E.g. “JCKN ECGUCT” =? “HAIL CAESAR” ⇒ K=2

• Chosen plaintext

• E.g. Have your spy ensure that the general will send “ALL QUIET”, 

observe “YJJ OSGCR” ⇒ K=24

• Is this IND-CPA?
 36

Computer Science 161 Fall 2020 Weaver

Break Time!

• Hey, lets use chat to find partners!

 37

Computer Science 161 Fall 2020 Weaver

Kerckhoffs’ Principle

• Cryptosystems should remain secure even when attacker
knows all internal details

• Don’t rely on security-by-obscurity

• Key should be only thing that must stay secret

• It should be easy to change keys

• Actually distributing these keys is hard, but  

we will talk about that particular problem later.

• But key distribution is one of the real...

 38

Computer Science 161 Fall 2020 Weaver

Better Versions of Rot-K ?

• Consider E(M,K) = Rot-{K1, K2, …, Kn}(M)

• i.e., rotate first character by K1, second character by K2, up through nth character. Then start

over with K1, ...

• K = { K1, K2, ..., Kn }

• How well do previous attacks work now?

• Brute force: key space is factor of 26(n-1) larger

• E.g., n = 7 ⇒ 300 million times as much work

• Letter frequencies: need more ciphertext to reason about

• Known/chosen plaintext: works just fine

• Can go further with “chaining”, e.g., 2nd rotation depends on K2 and first
character of ciphertext

• We just described 2,000 years of cryptography

 39

Computer Science 161 Fall 2020 Weaver

And Cryptanalysis: 
ULTRA
• During WWII, the Germans used enigma:

• System was a "rotor machine": A series of rotors, with each

rotor permuting the alphabet and every keypress incrementing
the settings

• Key was the selection of rotors, initial settings, and a permutation
plugboard

• A great graphical demonstration: 
https://observablehq.com/@tmcw/enigma-machine

• The British built a system (the "Bombe") to brute-
force Enigma

• Required a known-plaintext (a "crib") to verify decryption: e.g.

the weather report

• Sometimes the brits would deliberately "seed" a naval

minefield for a chosen-plaintext attack
 40

https://observablehq.com/@tmcw/enigma-machine

Computer Science 161 Fall 2020 Weaver

One-Time Pad

• Idea #1: use a different key for each message M

• Different = completely independent

• So: known plaintext, chosen plaintext, etc., don’t help attacker

• Idea #2: make the key as long as M

• E(M,K) = M ⊕ K (⊕ = XOR) 

 41

⊕ 0 1
0 0 1
1 1 0

X ⊕ 0 = X
X ⊕ X = 0

X ⊕ Y = Y ⊕ X
X ⊕ (Y ⊕ Z) = (X ⊕ Y) ⊕ Z

Computer Science 161 Fall 2020 Weaver

One-Time Pad

• Idea #1: use a different key for each message M

• Different = completely independent

• So: known plaintext, chosen plaintext, etc., don’t help attacker

• Idea #2: make the key as long as M

• E(M,K) = M ⊕ K (⊕ = XOR) 

D(C,K) = C ⊕ K 
 = M ⊕ K ⊕ K = M ⊕ 0 = M

 42

⊕ 0 1
0 0 1
1 1 0

X ⊕ 0 = X
X ⊕ X = 0

X ⊕ Y = Y ⊕ X
X ⊕ (Y ⊕ Z) = (X ⊕ Y) ⊕ Z

Computer Science 161 Fall 2020 Weaver

One-Time Pad: Provably Secure!

• Let’s assume Eve has partial information about M

• We want to show: from C, she does not gain any further

information

• Formalization: supposed Alice sends either M' or M''

• Eve doesn’t know which; tries to guess based on C

• Proof:

• For random, independent K, all possible bit-patterns for C are equally likely

• This holds regardless of whether Alice chose M' or M'', or even if Eve provides M' and

M'' to Alice and Alice selects which one (IND-CPA)

• Thus, observing a given C does not help Eve narrow down the possibilities in any way:

 43

Computer Science 161 Fall 2020 Weaver

One-Time Pad: Provably Impractical!

• Problem #1: key generation

• Need truly random, independent keys

• Problem #2: key distribution

• Need to share keys as long as all 

possible communication

• If we have a secure way to establish 

such keys, just use that for  
communication in the first place!

• Only advantage is you can communicate the 
key in advance: you may have the secure 
channel now but won't have it later

 44

Computer Science 161 Fall 2020 Weaver

Two-Time Pad?

• What if we reuse a key K jeeeest once?

• Alice sends C = E(M, K) and C' = E(M', K)
• Eve observes M ⊕ K and M' ⊕ K

• Can she learn anything about M and/or M' ?

• Eve computes C ⊕ C' = (M ⊕ K) ⊕ (M' ⊕ K) 
	

 45

Computer Science 161 Fall 2020 Weaver

Two-Time Pad?

• What if we reuse a key K jeeeest once?

• Alice sends C = E(M, K) and C' = E(M', K)
• Eve observes M ⊕ K and M' ⊕ K
• Can she learn anything about M and/or M' ?

• Eve computes C ⊕ C' = (M ⊕ K) ⊕ (M' ⊕ K) 
	= (M ⊕ M') ⊕ (K ⊕ K) 
	= (M ⊕ M') ⊕ 0 
	= M ⊕ M'

• Now she knows which bits in M match bits in M'

• And if Eve already knew M, now she knows M'!

• Even if not, Eve can guess M and ensure that M' is consistent

 46

Computer Science 161 Fall 2020 Weaver

VENONA: 
Pad Reuse in the Real World
• The Soviets used one-time pads for  

communication from their spies in the US

• After all, it is provably secure!

• During WWII, the Soviets started reusing 
key material

• Uncertain whether it was just the cost of generating pads or what...

• VENONA was a US cryptanalysis project designed to  
break these messages

• Included confirming/identifying the spies targeting the  

US Manhattan project

• Project continued until 1980!

• Not declassified until 1995!
• So secret even President Truman wasn't informed about it.

• But the Soviets found out about it in 1949, but their one-time  

pad reuse was fixed after 1948 anyway
 47

Computer Science 161 Fall 2020 Weaver

Number Stations: 
One Time Pads in the Real World
• There are shortwave and terrestrial radio "number stations"

• At a regular time, a voice gets on the air, reads a series of seemingly random

numbers

• For those without a corresponding one-time pad...

• They are simply a sequence of random numbers

• But if you do have the one-time pad...

• You can decrypt the super-secret spy message being sent to you

• But what if you don't want to send anything to any spies?

• Just read out a list of random numbers anyway

 48

Computer Science 161 Fall 2020 Weaver

"Traffic Analysis" & "Sidechannels"

• Traffic analysis: Simply knowing who is talking to whom or
when

• Can often reveal umm, interesting secrets

• Sidechannels: Something outside the cryptography itself
that reveals something interesting

• How modern crypto systems are usually broken

 49

Computer Science 161 Fall 2020 Weaver

A Sidechannel/Traffic Analysis 
Spy Example
• In the 90s, there were some Russian spies in the US

• "The Americans" was based on this incident

• A cuban-broadcast numbers station had a bug...

• Some nights it would never say "9"

• It turned out this corresponded when the Russian spies were
on vacation!

• And the FBI used that as part of their 

investigation!

• (Revealed inadvertently by Struck 
and analyzed by Matt Blaze)

 50

Computer Science 161 Fall 2020 Weaver

Modern Encryption: 
Block cipher
• A function E : {0, 1}b ×{0, 1}k → {0, 1}b. Once we fix the key K (of size k

bits), we get:

• EK : {0,1}b → {0,1}b denoted by EK(M) = E(M,K).

• (and also D(C,K), E(M,K)’s inverse)

• Three properties:

• Correctness:

• EK(M) is a permutation (bijective function) on b-bit strings

• Bijective ⇒ invertible

• Efficiency: computable in 𝜇sec’s

• Security:

• For unknown K, “behaves” like a random permutation

• Provides a building block for more extensive encryption
 51

Computer Science 161 Fall 2020 Weaver

DES (Data Encryption Standard)

• Designed in late 1970s

• Block size 64 bits, key size 56 bits

• NSA influenced two facets of its design

• Altered some subtle internal workings in a mysterious way

• Reduced key size 64 bits ⇒ 56 bits

• Made brute-forcing feasible for attacker with massive (for the time) computational resources

• Remains essentially unbroken 40 years later!

• The NSA’s tweaking hardened it against an attack “invented” a decade later

• However, modern computer speeds make it completely unsafe due
to small key size

 52

Computer Science 161 Fall 2020 Weaver

Today’s Go-To Block Cipher: 
AES (Advanced Encryption Standard)
• >20 years old, standardized >15 years ago...

• Block size 128 bits

• Key can be 128, 192, or 256 bits

• 128 remains quite safe; sometimes termed “AES-128”, 

paranoids use 256b

• As usual, includes encryptor and (closely-related) decryptor

• How it works is beyond scope of this class… 

But if you are curious: http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

• Not proven secure

• But no known flaws

• The NSA uses it for Top Secret communication with 256b keys: 

stuff they want to be secure for 40 years including possibly unknown breakthroughs!

• so we assume it is a secure block cipher

 53

http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

Computer Science 161 Fall 2020 Weaver

AES is also effectively free…

• Computational load is remarkably low

• Partially why it won the competition: 

There were 3 really good finalists from a performance viewpoint:  
Rijndael (the winner), Twofish, Serpent 
One OK: RC6 
One ugggly: Mars

• On any given computing platform: 
Rinjdael was never the fastest

• But on every computing platform: 
Rinjdael was always the second fastest

• The other two good ones always had a "this is the compute platform they are bad at"

• And now CPUs include dedicated AES support
 54

Computer Science 161 Fall 2020 Weaver

How Hard Is It To Brute-Force 128-bit Key?

• 2128 possibilities – well, how many is that?

• Handy approximation: 210 ≈ 103

• 2128 = 210*12.8 ≈ (103)12.8 ≲ (103)13 ≈ 1039

 55

Computer Science 161 Fall 2020 Weaver

How Hard Is It To Brute-Force 128-bit Key?

• 2128 possibilities – well, how many is that?

• Handy approximation: 210 ≈ 103

• 2128 = 210*12.8 ≈ (103)12.8 ≲ (103)13 ≈ 1039

• Say we build massive hardware that can try 109 (1 billion) keys in 1
nanosecond (a billionth of a second)

• So 1018 keys/sec

• Thus, we’ll need ≈ 1021 sec

• How long is that?

• One year ≈ 3x107 sec

• So need ≈ 3x1013 years ≈ 30 trillion years

 56

Computer Science 161 Fall 2020 Weaver

What about a 256b key in a year?

• Time to start thinking in
astronomical numbers:

• If each brute force device is 1mm3...

• We will need 1052 of these things...

• 1043 cubic meters...

• Or the volume of 7x1015 suns!

• Brute force is not a factor against

modern block ciphers... 
IF the key is actually random!

 57

Computer Science 161 Fall 2020 Weaver

Issues When Using the Building Block

• Block ciphers can only encrypt messages of a certain size

• If M is smaller, easy, just pad it (more later)

• If M is larger, can repeatedly apply block cipher

• Particular method = a “block cipher mode”

• Tricky to get this right!

• If same data is encrypted twice, attacker knows it is the
same

• Solution: incorporate a varying, known quantity (IV = “initialization vector”)

 58

Computer Science 161 Fall 2020 Weaver

Electronic Code Book (ECB) mode

• Simplest block cipher mode

• Split message into b-bit blocks P1, P2, …

• Each block is enciphered independently, separate from the

other blocks 
	Ci = E(Pi, K)

• Since key K is fixed, each block is subject to the same
permutation

• (As though we had a “code book” to map each possible input value to its
designated output)

 59

Computer Science 161 Fall 2020 Weaver

 60

P1 P2 P3

C1 C2 C3

ECB Encryption

Computer Science 161 Fall 2020 Weaver

 61

P1 P2 P3

C1 C2 C3

ECB Decryption

Problem: Relationships between Pi’s reflected in Ci’s

Computer Science 161 Fall 2020 Weaver

IND-CPA and ECB?

• Of course not!

• M,M' is 2x the block length...

• M = all 0s

• M' = 0s for 1 block, 1s for the 2nd block

• This has catastrophic implications in the real world...

 62

Computer Science 161 Fall 2020 Weaver

 63

Original image, RGB values split into a bunch of b-bit blocks

Computer Science 161 Fall 2020 Weaver

 64

Encrypted with ECB and interpreting ciphertext directly as RGB

Computer Science 161 Fall 2020 Weaver

 65

Later (identical) message again encrypted with ECB

Computer Science 161 Fall 2020 Weaver

Building a Better Cipher Block Mode

• Ensure blocks incorporate more than just the plaintext to mask
relationships between blocks. Done carefully, either of these works:

• Idea #1: include elements of prior computation

• Idea #2: include positional information

• Plus: need some initial randomness

• Prevent encryption scheme from determinism revealing relationships between messages

• Introduce initialization vector (IV):

• IV is a public nonce, a use-once unique value: Easiest way to get one is generate it randomly

• Example: Cipher Block Chaining (CBC) which we will 
discuss next time

 66

