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Cryptography is nightmare magic 
math that cares what kind of pen 
you use -@swiftonsecurity
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Finish Up Software 
Security &  
Crypto 1
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Announcements & Reminders

• Reminders on the chat....

• Use Q&A to ask questions

• Use chat to talk amongst yourselves: 

be sure to send to ALL not just "send to panelists"

• Just say SOMETHING, SOMETIME in chat for attendance tracking


• During the short break...

• Those who still want partners, lets use the chat to find them 


• Homework 1 due tomorrow at 11:59 PM PDT

• No late homework accepted, but you do get one homework drop
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Why does software have vulnerabilities?

• Programmers are humans. 
And humans make mistakes.


• Use tools 

• Programmers often aren’t security-aware.

• Learn about common types of security flaws. 

• Programming languages aren’t designed well 
for security.


• Use better languages (Java, Python, …).
 4
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Testing for Software Security Issues

• What makes testing a program for security problems difficult?

• We need to test for the absence of something


• Security is a negative property!

• “nothing bad happens, even in really unusual circumstances”


• Normal inputs rarely stress security-vulnerable code


• How can we test more thoroughly?

• Random inputs (fuzz testing)

• Mutation

• Spec-driven

• Use tools like Valgrind

• Test corner cases


• How do we tell when we’ve found a problem?

• Crash or other deviant behavior


• How do we tell that we’ve tested enough?

• Hard: but code-coverage tools can help
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Working Towards Secure Systems

• Along with securing individual components, we need to 
keep them up to date …


• What’s hard about patching?

• Can require restarting production systems

• Can break crucial functionality
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Working Towards Secure Systems

• Along with securing individual components, we need to 
keep them up to date …


• What’s hard about patching?

• Can require restarting production systems

• Can break crucial functionality

• Management burden:

• It never stops (the “patch treadmill”) …
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Working Towards Secure Systems

• Along with securing individual components, we need to keep them up 
to date …


• What’s hard about patching?

• Can require restarting production systems

• Can break crucial functionality

• Management burden:

• It never stops (the “patch treadmill”) …

• … and can be difficult to track just what’s needed where


• Other (complementary) approaches?

• Vulnerability scanning: probe your systems/networks for known flaws

• Penetration testing (“pen-testing”): pay someone to break into your systems …

• … provided they take excellent notes about how they did it!
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Some Approaches for 
Building Secure Software/Systems: Use Mitigations!
• Run-time checks

• Automatic bounds-checking (overhead)

• What do you do if check fails?  Probably controlled crash...


• Address randomization

• Make it hard for attacker to determine layout

• But they might get lucky / sneaky


• Non-executable stack, heap

• May break legacy code

• See also Return-Oriented Programming (ROP)


• Monitor code for run-time misbehavior

• E.g., illegal calling sequences

• But again: what do you if detected?

 12



Computer Science 161 Fall 2020 Weaver

Approaches for Secure Software, con’t

• Program in checks / “defensive programming”

• E.g., check for null pointer even though sure pointer will be valid

• Relies on programmer discipline


• Use safe libraries

• E.g. strlcpy, not strcpy; snprintf, not sprintf

• Relies on discipline or tools …


• Bug-finding tools

• Excellent resource as long as not many false positives


• Code review

• Can be very effective … but expensive
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Approaches for Secure Software, con’t

• Use a safe language

• E.g., Java, Python, C#, Go, Rust

• Safe = memory safety, strong typing, hardened libraries

• Installed base?  Programmer base?  Legacy? Performance?


• Structure user input

• Constrain how untrusted sources can interact with the system

• Really key later when we get to SQL injection...


• Perhaps by implementing a reference monitor


• Contain potential damage

• E.g., run system components in jails or VMs

• Think about privilege separation
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Real World Security: Securing your cellphone...

Look on the back:
• Does it say "iPhone"?

• Keep it up to date and be happy


• Does it say "Pixel"?

• Keep it up to date and be happy


• Does it say anything else?

• Toss it in the trash and buy an  

iPhone SE or a Pixel 4a


• Why?  The Android Patch Model...

• "Imagine if your Windows update needed to be  

approved by Intel, Dell, and Comcast...   
And none of them cared or had a reason to care"


• (Note: Google stopped updating the public dashboard that provided the great pie-chart, 
which is why this is a 2019 version in the pie chart)
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A Real World Exploitation Example: 
Exploit on Safari
• This was discovered about 2 year ago: 

https://blog.ret2.io/2018/07/11/pwn2own-2018-jsc-exploit/

• But the theme of how this work is quite common: 

Any use-after-free in Javascript where you can do this to an arbitrary object will usually 
target arrays


• Basic idea: a race condition can enable use-after-free in the 
JavaScript interpreter

• And the attacker's code is in JavaScript running on the target browser


• Use to create limited read/write primitive...

• To create arbitrary read/write primitive...

• To create binary code execution!

 16
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Key Insight #1: 
JavaScript Arrays...
• JavaScript arrays are length-checked

• So you can't read past the end of the array


• But if we allocate a bunch of arrays...

• And they are all still being used...

• But the runtime has a use-after-free error that allows us to reuse the memory as 

something else...

• We can overwrite the length field in the array specifier!

• Try this a whole bunch of times until successful (since it is probably a race condition to 

create the use-after-free condition)


• This gets a relative read/write primitive

• We have a JavaScript array that can read/write a long hunk of memory including other 

JavaScript objects
 17
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Key Insight #2: 
JavaScript TypedArray objects
• A way for JavaScript to have high  

performance access to other  
parts of memory

• Used for video, audio, etc... 

Runtime can say "Here, JavaScript, this is a fixed blob of memory for you to play with"

• Consists of a pointer to non-JavaScript memory and a length field


• So once we can read/write to a hunk of memory containing other 
JavaScript objects...

• Lets take one of those objects and rewrite it so the runtime thinks it is a TypedArray object: 

Now we can both adjust the pointer and the length


• Now we can arbitrarily write & read memory using JavaScript!
 18
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Key Insight #3: 
Why is JavaScript not glacially slow?
• Because JavaScript code is dynamically compiled into 

machine code!

• So there exist pages in memory for this code...

• That are set as both writeable and executable!


• So just find one of them...

• Create & run JavaScript functions, follow the pointers, and there you go!


• Now we can write assembly...  Start it running... 
And we've won!  Full arbitrary code execution!

 19
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Of course... 
Now you have to exit the sandbox!
• https://blog.ret2.io/2018/07/25/pwn2own-2018-safari-

sandbox/

• The Safari renderer is running in its own limited-authority 

process

• With a white-list of external resources its now allowed to access


• So find a vulnerability in one of those external resources

• Which in the Mac case is the "window server" that handles the drawing and 

has a wide attack surface

 20
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Cryptography: 
Philosophy...
• This part of the class is really don't try this at home

• It is incredibly easy to screw this stuff up


• It isn't just a matter of making encryption algorithms...

• Unless your name is David Wagner or Ralcua Popa, your crypto is broken!


• It isn't just a matter of coding good algorithms...

• Although just writing 100% correct code normally is hard enough!


• There is all sorts of deep voodoo that, 
when you screw up your security breaks

• EG, bad random number generators, side channel  

attacks, reusing one-use-only items, replay attacks,  
downgrade attacks, you name it...

 21
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LET ME REITERATE!!! 
DON'T DO THIS AT HOME!!!!
• This summer, 61A did a custom exam tool

• It would encrypt several python files for each student


• Every student got a different exam

• Written by a student who took CS161 already!!!  With Me!  WITH THESE WARNINGS!!!!


• Yet I failed...


• Each exam question was supposed to take 20 minutes

• So they would release the key for "question 1" to everyone... 

Then question 2...

• Everyone had the same key but a different question


• They used a "secure" algorithm... 
In an insecure way!

• Breaking this will be a late-semester lab2


• And we don't know if it got broken

• One detected student claimed there was a leakage of the exam before  

the start
 22
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Three main goals

• Confidentiality: preventing adversaries from reading our 
private data


• Data = message or document 


• Integrity: preventing attackers from altering our data

• Data itself might or might not be private


• Authentication: proving who created a given message or 
document


• Generally implies/requires integrity

 23
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Special guests

• Alice                (sender of messages) 


• Bob                  (receiver of messages)


• The attackers

• Eve: “eavesdropper”

• Mallory: “manipulator”

 24
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Mi: ith message 
of plaintext

Alice Bob

Eve

E(Mi, K) Ci: ith message 
of ciphertext D(Ci, K)

K K

Ci

Mi

Mi?

E(Mi, K) and D(Ci, K) are 
inverses for the same K

“Symmetric key encryption”

Confidentiality
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The Ideal Contest

• Attacker’s goal: any knowledge of Mi beyond an upper 
bound on its length


• Slightly better than 50% probability at guessing a single bit: attacker wins!

• Any notion of how Mi relates to Mj: attacker wins!


• Defender’s goal: ensure attacker has no reason to think any 
M' ∈ {0,1}n is more likely than any other


• (for Mi of length n)

 26
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Eve’s Capabilities/Foreknowledge

• No knowledge of K

• We assume K is selected by a truly random process

• For b-bit key, any K ∈ {0,1}b is equally likely


• Recognition of success: Eve can generally tell if she has correctly 
and fully recovered Mi

• But: Eve cannot recognize anything about partial solutions, such as whether she has 

correctly identified a particular bit in Mi

• There are some attacks where Eve can guess and verify: 

Often a side-channel using a "decryption oracle": fooling the server into trying & failing 
with the nature of different failures telling Eve whether she guessed right


• Does not apply to scenarios where Eve exhaustively examines every possible Mi' ∈ 
{0,1}n 

 27
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Eve’s Available Information

1.Ciphertext-only attack:

• Eve gets to see every instance of Ci

• Variant: Eve may also have partial information about Mi

• “It’s probably English text”

• Bob is Alice’s stockbroker, so it’s either “Buy!” or “Sell”


2.Known plaintext:

• Eve knows part of Mi and/or entire other Mjs

• How could this happen?

• Encrypted HTTP request: starts with “GET” 

• Eve sees earlier message she knows Alice will send to Bob

• Alice transmits in the clear and then resends encrypted

• Alex the Nazi always transmits the weather report at the 

same time of day, with the word "Wetter" in a known position
 28
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Eve’s Available Information, con’t

3.Chosen plaintext

• Eve gets Alice to send Mj’s of Eve’s choosing

• How can this happen?

• E.g. Eve sends Alice an email spoofed from Alice’s boss saying “Please securely forward this to Bob”

• E.g. Eve has some JavaScript running in Alice's web browser that is contacting Bob's TLS web server


4.Chosen ciphertext:

• Eve tricks Bob into decrypting some Cj' of her  

choice and he reveals something about the result

• How could this happen?

• E.g. repeatedly send ciphertext to a web server that will  

send back different-sized messages depending on whether  
ciphertext decrypts into something well-formatted


• Or: measure how long it takes Bob to decrypt & validate
 29
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Eve’s Available Information, con’t

5.Combinations of the above

• Ideally, we’d like to defend against this last, the most 

powerful attacker

• And: we can!, so we’ll mainly focus on this attacker when 

discussing different considerations

 30
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Independence Under Chosen Plaintext Attack  
game: IND-CPA
• Eve is interacting with an encryption "Oracle"

• Oracle has an unknown random key k


• Eve can provide two separate chosen plaintexts of the same 
length


• Oracle will randomly select one to encrypt with the unknown key

• The game can repeat, with the oracle using the same key...


• Goal of Eve is to have a better than random chance of 
guessing which plaintext the oracle selected


• Variations involve the Oracle always selecting either the first or the second 
record

 31
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Designing Ciphers

• Clearly, the whole trick is in the design of E(M,K) and D(C,K)

• One very simple approach: 
	E(M,K) = ROTK(M); D(C,K) = ROT-K(C) 
i.e., take each letter in M and “rotate” it K positions (with wrap-around) 
through the alphabet


• E.g., Mi = “DOG”, K = 3 
  Ci = E(Mi,K) = ROT3(“DOG”) = “GRJ” 
  D(Ci,K) = ROT-3(“GRJ”) = “DOG”


• “Caesar cipher”

• "This message has been encrypted twice by ROT-13 for 

your protection"
 32
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Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”

 33
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Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”


• Deduction:

• Analyze letter frequencies (“ETAOIN SHRDLU”)

• Known plaintext / guess possible words & confirm

• E.g. “JCKN ECGUCT” =? 

 34
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Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”


• Deduction:

• Analyze letter frequencies (“ETAOIN SHRDLU”)

• Known plaintext / guess possible words & confirm

• E.g. “JCKN ECGUCT” =? “HAIL CAESAR”

 35
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Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”


• Deduction:

• Analyze letter frequencies (“ETAOIN SHRDLU”)

• Known plaintext / guess possible words & confirm

• E.g. “JCKN ECGUCT” =? “HAIL CAESAR” ⇒ K=2


• Chosen plaintext

• E.g. Have your spy ensure that the general will send “ALL QUIET”, 

observe “YJJ OSGCR” ⇒ K=24


• Is this IND-CPA?
 36
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Break Time!

• Hey, lets use chat to find partners!

 37
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Kerckhoffs’ Principle

• Cryptosystems should remain secure even when attacker 
knows all internal details


• Don’t rely on security-by-obscurity


• Key should be only thing that must stay secret

• It should be easy to change keys

• Actually distributing these keys is hard, but  

we will talk about that particular problem later.

• But key distribution is one of the real...

 38
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Better Versions of Rot-K ?

• Consider E(M,K) = Rot-{K1, K2, …, Kn}(M)

• i.e., rotate first character by K1, second character by K2, up through nth character.  Then start 

over with K1, ...

• K = { K1, K2, ..., Kn }


• How well do previous attacks work now?

• Brute force: key space is factor of 26(n-1) larger

• E.g., n = 7 ⇒ 300 million times as much work


• Letter frequencies: need more ciphertext to reason about

• Known/chosen plaintext: works just fine


• Can go further with “chaining”, e.g., 2nd rotation depends on K2 and first 
character of ciphertext

• We just described 2,000 years of cryptography

 39
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And Cryptanalysis: 
ULTRA
• During WWII, the Germans used enigma:

• System was a "rotor machine": A series of rotors, with each 

rotor permuting the alphabet and every keypress incrementing 
the settings


• Key was the selection of rotors, initial settings, and a permutation 
plugboard


• A great graphical demonstration: 
https://observablehq.com/@tmcw/enigma-machine


• The British built a system (the "Bombe") to brute-
force Enigma

• Required a known-plaintext (a "crib") to verify decryption: e.g. 

the weather report

• Sometimes the brits would deliberately "seed" a naval 

minefield for a chosen-plaintext attack
 40

https://observablehq.com/@tmcw/enigma-machine


Computer Science 161 Fall 2020 Weaver

One-Time Pad

• Idea #1: use a different key for each message M

• Different = completely independent

• So: known plaintext, chosen plaintext, etc., don’t help attacker


• Idea #2: make the key as long as M

• E(M,K) = M ⊕ K   (⊕ = XOR) 

 41

⊕ 0 1
0 0 1
1 1 0

X ⊕ 0 = X    
X ⊕ X = 0     

X ⊕ Y = Y ⊕ X
X ⊕ (Y ⊕ Z) = (X ⊕ Y) ⊕ Z
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One-Time Pad

• Idea #1: use a different key for each message M

• Different = completely independent

• So: known plaintext, chosen plaintext, etc., don’t help attacker


• Idea #2: make the key as long as M

• E(M,K) = M ⊕ K   (⊕ = XOR) 

D(C,K) = C ⊕ K 
  = M ⊕ K ⊕ K =  M ⊕ 0 =  M
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⊕ 0 1
0 0 1
1 1 0

X ⊕ 0 = X    
X ⊕ X = 0     

X ⊕ Y = Y ⊕ X
X ⊕ (Y ⊕ Z) = (X ⊕ Y) ⊕ Z
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One-Time Pad: Provably Secure!

• Let’s assume Eve has partial information about M

• We want to show: from C, she does not gain any further 

information

• Formalization: supposed Alice sends either M' or M''

• Eve doesn’t know which; tries to guess based on C


• Proof:

• For random, independent K, all possible bit-patterns for C are equally likely

• This holds regardless of whether Alice chose M' or M'', or even if Eve provides M' and 

M'' to Alice and Alice selects which one (IND-CPA)

• Thus, observing a given C does not help Eve narrow down the possibilities in any way:

 43
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One-Time Pad: Provably Impractical!

• Problem #1: key generation

• Need truly random, independent keys


• Problem #2: key distribution

• Need to share keys as long as all 

possible communication

• If we have a secure way to establish 

such keys, just use that for  
communication in the first place!


• Only advantage is you can communicate the 
key in advance: you may have the secure 
channel now but won't have it later

 44
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Two-Time Pad?

• What if we reuse a key K jeeeest once?

• Alice sends C = E(M, K) and C' = E(M', K) 
• Eve observes M ⊕ K and M' ⊕ K

• Can she learn anything about M and/or M' ?


• Eve computes C ⊕ C' = (M ⊕ K) ⊕ (M' ⊕ K) 
	

 45
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Two-Time Pad?

• What if we reuse a key K jeeeest once?

• Alice sends C = E(M, K) and C' = E(M', K) 
• Eve observes M ⊕ K and M' ⊕ K 
• Can she learn anything about M and/or M' ?


• Eve computes C ⊕ C' = (M ⊕ K) ⊕ (M' ⊕ K) 
	= (M ⊕ M') ⊕ (K ⊕ K) 
	= (M ⊕ M') ⊕ 0 
	= M ⊕ M' 

• Now she knows which bits in M match bits in M'

• And if Eve already knew M, now she knows M'!

• Even if not, Eve can guess M and ensure that M' is consistent

 46
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VENONA: 
Pad Reuse in the Real World
• The Soviets used one-time pads for  

communication from their spies in the US

• After all, it is provably secure!


• During WWII, the Soviets started reusing 
key material

• Uncertain whether it was just the cost of generating pads or what...


• VENONA was a US cryptanalysis project designed to  
break these messages

• Included confirming/identifying the spies targeting the  

US Manhattan project

• Project continued until 1980!


• Not declassified until 1995! 
• So secret even President Truman wasn't informed about it.

• But the Soviets found out about it in 1949, but their one-time  

pad reuse was fixed after 1948 anyway
 47
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Number Stations: 
One Time Pads in the Real World
• There are shortwave and terrestrial radio "number stations"

• At a regular time, a voice gets on the air, reads a series of seemingly random 

numbers


• For those without a corresponding one-time pad...

• They are simply a sequence of random numbers


• But if you do have the one-time pad...

• You can decrypt the super-secret spy message being sent to you


• But what if you don't want to send anything to any spies?

• Just read out a list of random numbers anyway

 48



Computer Science 161 Fall 2020 Weaver

"Traffic Analysis" & "Sidechannels"

• Traffic analysis: Simply knowing who is talking to whom or 
when


• Can often reveal umm, interesting secrets


• Sidechannels: Something outside the cryptography itself 
that reveals something interesting


• How modern crypto systems are usually broken

 49
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A Sidechannel/Traffic Analysis 
Spy Example
• In the 90s, there were some Russian spies in the US

• "The Americans" was based on this incident


• A cuban-broadcast numbers station had a bug...

• Some nights it would never say "9"


• It turned out this corresponded when the Russian spies were 
on vacation!

• And the FBI used that as part of their 

investigation!


• (Revealed inadvertently by Struck 
and analyzed by Matt Blaze)

 50
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Modern Encryption: 
Block cipher
• A function E : {0, 1}b ×{0, 1}k → {0, 1}b. Once we fix the key K (of size k 

bits), we get: 

• EK : {0,1}b → {0,1}b   denoted by EK(M) = E(M,K).

• (and also D(C,K), E(M,K)’s inverse)


• Three properties:

• Correctness:

• EK(M) is a permutation (bijective function) on b-bit strings

• Bijective ⇒ invertible


• Efficiency: computable in 𝜇sec’s


• Security:

• For unknown K, “behaves” like a random permutation


• Provides a building block for more extensive encryption
 51
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DES (Data Encryption Standard)

• Designed in late 1970s

• Block size 64 bits, key size 56 bits

• NSA influenced two facets of its design

• Altered some subtle internal workings in a mysterious way

• Reduced key size 64 bits ⇒ 56 bits


• Made brute-forcing feasible for attacker with massive (for the time) computational resources


• Remains essentially unbroken 40 years later!

• The NSA’s tweaking hardened it against an attack “invented” a decade later


• However, modern computer speeds make it completely unsafe due 
to small key size

 52
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Today’s Go-To Block Cipher: 
AES (Advanced Encryption Standard)
• >20 years old, standardized >15 years ago...

• Block size 128 bits

• Key can be 128, 192, or 256 bits

• 128 remains quite safe; sometimes termed “AES-128”, 

paranoids use 256b


• As usual, includes encryptor and (closely-related) decryptor

• How it works is beyond scope of this class… 

But if you are curious: http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html


• Not proven secure

• But no known flaws

• The NSA uses it for Top Secret communication with 256b keys: 

stuff they want to be secure for 40 years including possibly unknown breakthroughs!

• so we assume it is a secure block cipher

 53
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AES is also effectively free…

• Computational load is remarkably low

• Partially why it won the competition: 

There were 3 really good finalists from a performance viewpoint:  
Rijndael (the winner), Twofish, Serpent 
One OK: RC6 
One ugggly: Mars


• On any given computing platform: 
Rinjdael was never the fastest


• But on every computing platform: 
Rinjdael was always the second fastest

• The other two good ones always had a "this is the compute platform they are bad at"


• And now CPUs include dedicated AES support
 54
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How Hard Is It To Brute-Force 128-bit Key?

• 2128 possibilities – well, how many is that?

• Handy approximation: 210 ≈ 103


• 2128 = 210*12.8 ≈ (103)12.8 ≲ (103)13 ≈ 1039

 55
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How Hard Is It To Brute-Force 128-bit Key?

• 2128 possibilities – well, how many is that?

• Handy approximation: 210 ≈ 103


• 2128 = 210*12.8 ≈ (103)12.8 ≲ (103)13 ≈ 1039


• Say we build massive hardware that can try 109 (1 billion) keys in 1 
nanosecond (a billionth of a second)

• So 1018 keys/sec

• Thus, we’ll need ≈ 1021 sec


•  How long is that?

• One year ≈ 3x107 sec

• So need ≈ 3x1013 years ≈ 30 trillion years

 56
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What about a 256b key in a year?

• Time to start thinking in 
astronomical numbers:


• If each brute force device is 1mm3...

• We will need 1052 of these things...


• 1043 cubic meters...

• Or the volume of 7x1015 suns!

• Brute force is not a factor against 

modern block ciphers... 
IF the key is actually random!

 57
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Issues When Using the Building Block

• Block ciphers can only encrypt messages of a certain size

• If M is smaller, easy, just pad it (more later)

• If M is larger, can repeatedly apply block cipher

• Particular method = a “block cipher mode”

• Tricky to get this right!


• If same data is encrypted twice, attacker knows it is the 
same


• Solution: incorporate a varying, known quantity (IV = “initialization vector”)

 58
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Electronic Code Book (ECB) mode

• Simplest block cipher mode

• Split message into b-bit blocks P1, P2, …

• Each block is enciphered independently, separate from the 

other blocks 
	Ci = E(Pi, K)


• Since key K is fixed, each block is subject to the same 
permutation


• (As though we had a “code book” to map each possible input value to its 
designated output)
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P1 P2 P3

C1 C2 C3

ECB Encryption
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P1 P2 P3

C1 C2 C3

ECB Decryption

Problem: Relationships between Pi’s reflected in Ci’s
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IND-CPA and ECB?

• Of course not!

• M,M' is 2x the block length...

• M = all 0s

• M' = 0s for 1 block, 1s for the 2nd block


• This has catastrophic implications in the real world...
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Original image, RGB values split into a bunch of b-bit blocks
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Encrypted with ECB and interpreting ciphertext directly as RGB
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Later (identical) message again encrypted with ECB
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Building a Better Cipher Block Mode

• Ensure blocks incorporate more than just the plaintext to mask 
relationships between blocks.  Done carefully, either of these works:

• Idea #1: include elements of prior computation

• Idea #2: include positional information


• Plus: need some initial randomness

• Prevent encryption scheme from determinism revealing relationships between messages

• Introduce initialization vector (IV):

• IV is a public nonce, a use-once unique value:  Easiest way to get one is generate it randomly


• Example: Cipher Block Chaining (CBC) which we will 
discuss next time
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