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Modern Encryption: 
Block cipher
• A function E : {0, 1}b ×{0, 1}k → {0, 1}b. Once we fix the key K (of size k 

bits), we get: 

• EK : {0,1}b → {0,1}b   denoted by EK(M) = E(M,K).

• (and also D(C,K), E(M,K)’s inverse)


• Three properties:

• Correctness:

• EK(M) is a permutation (bijective function) on b-bit strings

• Bijective ⇒ invertible


• Efficiency: computable in 𝜇sec’s


• Security:

• For unknown K, “behaves” like a random permutation


• Provides a building block for more extensive encryption
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DES (Data Encryption Standard)

• Designed in late 1970s

• Block size 64 bits, key size 56 bits

• NSA influenced two facets of its design

• Altered some subtle internal workings in a mysterious way

• Reduced key size 64 bits ⇒ 56 bits


• Made brute-forcing feasible for attacker with massive (for the time) computational resources


• Remains essentially unbroken 40 years later!

• The NSA’s tweaking hardened it against an attack “invented” a decade later


• However, modern computer speeds make it completely unsafe due 
to small key size
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Today’s Go-To Block Cipher: 
AES (Advanced Encryption Standard)
• >20 years old, standardized >15 years ago...

• Block size 128 bits

• Key can be 128, 192, or 256 bits

• 128 remains quite safe; sometimes termed “AES-128”, 

paranoids use 256b


• As usual, includes encryptor and (closely-related) decryptor

• How it works is beyond scope of this class… 

But if you are curious: http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html


• Not proven secure

• But no known flaws

• The NSA uses it for Top Secret communication with 256b keys: 

stuff they want to be secure for 40 years including possibly unknown breakthroughs!

• so we assume it is a secure block cipher
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AES is also effectively free…

• Computational load is remarkably low

• Partially why it won the competition: 

There were 3 really good finalists from a performance viewpoint:  
Rijndael (the winner), Twofish, Serpent 
One OK: RC6 
One ugggly: Mars


• On any given computing platform: 
Rinjdael was never the fastest


• But on every computing platform: 
Rinjdael was always the second fastest

• The other two good ones always had a "this is the compute platform they are bad at"


• And now CPUs include dedicated AES support
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How Hard Is It To Brute-Force 128-bit Key?

• 2128 possibilities – well, how many is that?

• Handy approximation: 210 ≈ 103


• 2128 = 210*12.8 ≈ (103)12.8 ≲ (103)13 ≈ 1039
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How Hard Is It To Brute-Force 128-bit Key?

• 2128 possibilities – well, how many is that?

• Handy approximation: 210 ≈ 103


• 2128 = 210*12.8 ≈ (103)12.8 ≲ (103)13 ≈ 1039


• Say we build massive hardware that can try 109 (1 billion) keys in 1 
nanosecond (a billionth of a second)

• So 1018 keys/sec

• Thus, we’ll need ≈ 1021 sec


•  How long is that?

• One year ≈ 3x107 sec

• So need ≈ 3x1013 years ≈ 30 trillion years
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What about a 256b key in a year?

• Time to start thinking in 
astronomical numbers:

• If each brute force device is 1mm3...

• We will need 1052 of these things...


• 1043 cubic meters...

• Or the volume of 7x1015 suns!

• Yes, 7 petasuns worth of sci-fi nanotech!


• Brute force is not a factor against 
modern block ciphers... 
IF the key is actually random!
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Issues When Using the Building Block

• Block ciphers can only encrypt messages of a certain size

• If M is smaller, easy, just pad it (more later)

• If M is larger, can repeatedly apply block cipher

• Particular method = a “block cipher mode”

• Tricky to get this right!


• If same data is encrypted twice, attacker knows it is the 
same


• Solution: incorporate a varying, known quantity (IV = “initialization vector”)
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So enter "Modes of operation"

• We don't just run the block cipher on its own...

• But instead as part of a larger "Mode of Operation":

• Combining the block cypher as the core of a larger function

 10



Computer Science 161 Fall 2020 Weaver

Electronic Code Book (ECB) mode

• Simplest block cipher mode

• Split message into b-bit blocks P1, P2, …

• Each block is enciphered independently, separate from the 

other blocks 
	Ci = E(Pi, K)


• Since key K is fixed, each block is subject to the same 
permutation


• (As though we had a “code book” to map each possible input value to its 
designated output)
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P1 P2 P3

C1 C2 C3

ECB Encryption
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P1 P2 P3

C1 C2 C3

ECB Decryption

Problem: Relationships between Pi’s reflected in Ci’s
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IND-CPA and ECB?

• Of course not!

• M,M' is 2x the block length...

• M = all 0s

• M' = 0s for 1 block, 1s for the 2nd block


• This has catastrophic implications in the real world...
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Original image, RGB values split into a bunch of b-bit blocks
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Encrypted with ECB and interpreting ciphertext directly as RGB
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Later (identical) message again encrypted with ECB
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Building a Better Cipher Block Mode

• Ensure blocks incorporate more than just the plaintext to 
mask relationships between blocks.  Done carefully, either of 
these works:

• Idea #1: include elements of prior computation

• Idea #2: include positional information


• Plus: need some initial randomness

• Prevent encryption scheme from determinism revealing relationships between 

messages

• Introduce initialization vector (IV):

• IV is a public nonce, a use-once unique value:  Easiest way to get one is generate it 

randomly
 18
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Nonces

• A nonce is a public use-once value

• EG, as the initialization vector


• It is critical to never ever ever ever reuse a nonce

• But if the nonce is 128b or greater, generate it randomly and you are good


• Depending on the algorithm, it can be mildly bad

• Eh, you leak a little information...


• To catastrophic,  
CATASTROPHIC FAILURE!
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CBC Encryption
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P1 P2 P3

C1 C2 C3

E(Plaintext, K):   
• If b is the block size of the block cipher, split the plaintext 

in blocks of size b: P1, P2, P3,.. 
• Choose a random IV (do not reuse for other messages) 
• Now compute: 

• Final ciphertext is (IV, C1, C2, C3).  This is what Eve sees.
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CBC Decryption
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P1 P2 P3

C1 C2 C3

D(Ciphertext, K):   
• Take IV out of the ciphertext 
• If b is the block size of the block cipher, split the ciphertext 

in blocks of size b: C1, C2, C3, …

• Now compute this: 

• Output the plaintext as the concatenation of P1, P2, P3, ...
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Original image, RGB values split into a bunch of b-bit blocks
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Encrypted with CBC: Should be indistinguishable from random noise
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CBC Mode...

• Widely used

• Issue: sequential encryption, can't parallelize encryption

• Must finish encrypting block b before starting b+1

• But you can parallelize decryption 

• Parallelizable alternative: CTR (Counter) mode

• Security: If no reuse of nonce, both are provably secure 

(IND-CPA) assuming the underlying block cipher is secure
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And padding…

• What happens if length(M) % BlockSize != 0?

• Need to “Pad” to add bits


• Two main options:

• Send the length at the start of the message…

• And then who cares what you add on at the end


• Use a padding scheme that you can add on to the end…


• EG, PKCS#7:

• If M % BlockSize == Blocksize - 1: Pad with 0x01

• If M % BlockSize == Blocksize - 2: Pad with 0x02 0x02 

….

• If M % BlockSize == 0: Pad a full block with the block size (so for AES 0x20 0x20…)
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CTR Mode Encryption
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(Nonce = Same as IV)

C1 C2 C3

P1 P2 P3

Important that nonce/IV does not 
repeat across different encryptions. 
Choose at random! 
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Counter Mode Decryption
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Note, CTR decryption uses block 
cipher’s encryption, not decryption

C1 C2 C3

P1 P2 P3



Computer Science 161 Fall 2020 Weaver

Thoughts on CTR mode...

• CTR mode is actually a stream cipher (more on those later):

• You no longer need to worry about padding which is nice


• CTR mode is fully parallelizeable for encryption as well as 
decryption


• In high performance applications you can always just throw more compute 
and encrypt faster
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NEVER EVER EVER use CTR Mode! 
(Well, if you are paranoid…)
• What happens if you reuse the IV in CBC...

• Its bad but not catastrophic: 

you fail IND-CPA but the damage may be tolerable:

• M = {A,A,B} 

M' = {A,B,B} 
Adversary can see that the first part of M and M' are the same, but not the later part


• What happens if you reuse the IV in CTR mode?

• It is exactly like reusing a one-time pad!


• An example of a system which fails badly...

• CTR mode is theoretically as secure as CBC when 

used properly...

• But when it is misused it fails catastrophically: 

Personal bias:  I believe we need systems that are still  
robust when implemented incorrectly
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This was the summer 61A exam mistake!

• They used a python AES library

• A bad library for a whole host of reasons but...


• When they invoked CTR mode encryption...

• They never specified an IV... 

Just assuming the library would use a RANDOM IV

• Nope, library defaults to a 0 IV


• And since multiple different versions of the exam are all 
encrypted with the same key...


• ALL SECURITY WAS LOST!
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What To Use Then?

• What if you want a cipher mode where you don't need to 
pad (like CTR mode)?


• But you want the robust to screwup properties of CBC mode?


• Idea: lets do it CTR-like (xor plaintext with block cipher 
output), but...


• Instead of the next block input being an incremented 
counter... 
have the next block be the previous ciphertext


• Still lacks integrity however, we'll fix that next time...
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CFB Encryption

 32
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CFB Decryption

 33
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CFB doesn't need to pad...

• Since the encryption is XORed with the plaintext...

• You can end on a "short" block without a problem

• So more convenient than CBC mode


• But similar security properties as CBC mode

• Sequential encryption, parallel decryption

• Same error propagation effects

• Effectively the same for IND-CPA


• But a bit worse if you reuse the IV
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Mallory the Manipulator

• Mallory is an active attacker

• Can introduce new messages (ciphertext)

• Can “replay” previous ciphertexts

• Can cause messages to be reordered or discarded


• A “Man in the Middle” (MITM) attacker

• Can be much more powerful than just eavesdropping

 35
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Encryption Does Not Provide Integrity

• Simple example: Consider a block cipher in CTR mode...

• Suppose Mallory knows that Alice sends to Bob “Pay Mal 

$0100”.  Mallory intercepts corresponding C

• M = “Pay Mal $0100”.  C = “r4ZC#jj8qThMK”

• M10..13 = “0100”.  C10..13 = “ThMK”


• Mallory wants to replace some 
bits of C...

 36
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Encryption Does Not Provide Integrity

• Mallory computes

• “0100” ⨁ C10..13

• Tells Mallory that section of the counter XOR: 

Remember that CTR mode computes Ek(IV||CTR) and XORs it with the corresponding 
part of the message


• C'10..13 = "9999" ⨁ “0100” ⨁ C10..13


• Mallory now forwards to Bob a full C' = C0..9||C'10..13||C14...

• Bob will decrypt the message as "Pay Mal $9999"...

• For a CTR mode cipher, Mallory can in general replace any known message 

M with a message M' of equal length!
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Integrity and Authentication

• Integrity: Bob can confirm that what he’s received is exactly the message M that 
was originally sent


• Authentication: Bob can confirm that what he’s received was indeed generated 
by Alice


• Reminder: for either, confidentiality may-or-may-not matter

• E.g. conf. not needed when Mozilla distributes a new Firefox binary


• Approach using symmetric-key cryptography:

• Integrity via MACs (which use a shared secret key K)

• Authentication arises due to confidence that only Alice & Bob have K


• Approach using public-key cryptography (later on):

• “Digital signatures” provide both integrity & authentication together


• Key building block: cryptographically strong hash functions
 38
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Hash Functions

• Properties

• Variable input size

• Fixed output size (e.g., 256 bits)

• Efficient to compute

• Pseudo-random (mixes up input extremely well): 

A single bit changes on the input and ~1/2 the bits should change on the output 
 

• Provides a “fingerprint” of a document

• E.g. “shasum -a 256 <exams/mt1-solutions.pdf” prints 

0843b3802601c848f73ccb5013afa2d5c4d424a6ef477890ebf8db9bc4f7d13d
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Cryptographically Strong Hash Functions

• A collision occurs if x≠y but  
Hash(x) = Hash(y) 

• Since input size > output size, collisions do happen


• A cryptographically strong Hash(x)  
provides three properties:


• One-way: h = Hash(x) easy to compute,  
but not to invert.


• Intractable to find any x' s.t. Hash(x') = h,  
for a given h


• Also termed “preimage resistant”

 40
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Cryptographically Strong Hash Functions

• The other two properties of a cryptographically strong Hash(x):

• Second preimage resistant: given x, intractable to find x' s.t. Hash(x) = Hash(x')

• Collision resistant: intractable to find any x, y s.t. Hash(x) = Hash(y)


• Collision resistant ⟹ Second preimage resistant

• We consider them separately because given Hash might differ in how well it resists 

each 

• Also, the Birthday Paradox means that for n-bit Hash, finding x-y pair takes only ≈ 2n/2 

hashes

• Vs. potentially 2n tries for x': Hash(x) = Hash(x') for given x


• Plus a hash function should look "random"

• A "PRF" or Pseudo-Random Function
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Cryptographically Strong Hash Functions, con’t

• Some contemporary hash functions

• MD5: 128 bits 

• broken – lack of collision resistance

• Collisions for the heck of it: https://shells.aachen.ccc.de/~spq/md5.gif  

An MD5 "hash quine": an animated GIF that shows its own hash

• SHA-1: 160 bits broken spring 2017, but was known to be weak yet still used...

• SHA-256/SHA-384/SHA-512: 256, 384, 512 bits in the SHA-2 family, at least not currently broken

• SHA-3: New standard!  Yayyy!!!!  (Based on Keccak, again 256b, 384b, and 512b options)


• Provide a handy way to unambiguously refer to large documents

• If hash can be securely communicated, provides integrity

• E.g. Mozilla securely publishes SHA-256(new FF binary)

• Anyone who fetches binary can use “cat binary | shasum -a 256” to confirm it’s the right one, untampered


• Not enough by themselves for integrity, since functions are completely known – 
Mallory can just compute revised hash value to go with altered message
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SHA-256...

• SHA-256/SHA-384 are two parameters for the SHA-2 hash 
algorithm, returning 256b or 384b hashes


• Works on blocks with a truncation routine to make it act on sequences of 
arbitrary length


• Is vulnerable to a length-extension attack: s is secret

• Mallory knows len(s), H(s) 
• Mallory can use this to calculate H(s||M) for an M of Mallory's construction

• Works because all the internal state at the point of calculating H(s||...) is derivable 

from H(s) and len(s)


• New SHA-3 standard (Keccak) does not have this property
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Stupid Hash Tricks: 
Sample A File...
• BlackHat Dude claims to have 150M records stolen from 

Equifax...

• How can I as a reporter verify this?


• Idea:  If I can have the hacker select 10 random lines...

• And in selecting them also say something about the size of the file...

• Voila!  Verify those lines and I now know he's not full of BS


• Can I use hashing to write a small script which the BlackHat 
Dude can run?


• Where I can easily verify that the 10 lines were sampled at random, and can't 
be faked?
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Sample a File

 45

#!/usr/bin/env python 
import hashlib, sys 
hashes = {} 

for line in sys.stdin: 
    line = line.strip() 
    for x in range(10): 
        tmp = "%s-%i-nickrocks" % (line, x) 
        hashval = hashlib.sha256(tmp) 
        h = hashval.digest() 
        if x not in hashes or hashes[x][0] > h: 
            hashes[x] = (h, hashval, tmp) 

for x in range(10): 
    h, hashval, val = hashes[x] 
    print "%s=\"%s\"" % (hashval.hexdigest(), val)
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Why does this work?

• For each x in range 0-9...

• Calculates H(line||x)

• Stores the lowest hash matching so far


• Since the hash appears random...

• Each iteration is an independent sample from the file

• The expected value of H(line||x) is a function of the size of the file: 

More lines, and the value is smaller


• To fake it...

• Would need to generate fake lines, and see if the hash is suitably low

• Yet would need to make sure these fake lines semantically match!

• Thus you can't just go "John Q Fake", "John Q Fakke", "Fake, John Q", etc...

 46



Computer Science 161 Fall 2020 Weaver

Message Authentication Codes (MACs)

• Symmetric-key approach for integrity

• Uses a shared (secret) key K 


• Goal: when Bob receives a message, can confidently determine it hasn’t 
been altered

• In addition, whomever sent it must have possessed K 

	 (⇒ message authentication, sorta...)


• Conceptual approach:

• Alice sends {M, T} to Bob, with tag T = MAC(K, M)

• Note, M could instead be C = EK'(M), but not required


• When Bob receives {M', T'}, Bob checks whether T' = MAC(K, M')

• If so, Bob concludes message untampered, came from Alice

• If not, Bob discards message as tampered/corrupted
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Requirements for Secure MAC Functions

• Suppose MITM attacker Mallory intercepts Alice’s {M, T} transmission …

• … and wants to replace M with altered M* 
• … but doesn’t know shared secret key K


• We have secure integrity if MAC function 
T = MAC(M, K) has two properties:

• Mallory can’t compute T* = MAC(M*, K)

• Otherwise, could send Bob {M*, T*} and fool him


• Mallory can’t find M** such that MAC(M**, K) = T

• Otherwise, could send Bob {M**, T} and fool him


• These need to hold even if Mallory can observe many {Mi, Ti} pairs, 
including for Mi’s she chose
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MAC then Encrypt or  
Encrypt then MAC
• You should never use the same key for the MAC and the Encryption

• Some MACs will break completely if you reuse the key

• Even if it is probably safe (eg, AES for encryption, HMAC for MAC) its still a bad idea


• MAC then Encrypt:

• Compute T = MAC(M,Kmac), send C = E(M||T,Kencrypt)


• Encrypt then MAC:

• Compute C = E(M,Kencrypt), T = MAC(C,Kmac),  

send C||T


• Theoretically they are the same, but...

• Once again, its time for ...
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HTTPS Authentication in 
Practice
• When you log into a web site, it sets a "cookie" in your browser

• All subsequent requests include this cookie so the web server knows who you are


• If an attacker can get your cookie...

• They can impersonate you on the "Secure" site


• And the attacker can create multiple  
tries

• On a WiFi network, inject a bit of JavaScript 

that repeatedly connects to the site

• While as a man-in-the-middle to manipulate  

connections
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The TLS 1.0 "Lucky13" Attack: 
"F-U, This is Cryptography"
• HTTPS/TLS uses MAC then Encrypt

• With CBC encryption


• The Lucky13 attack changes the cipher text in an attempt to discover the 
state of a byte

• But can't predict the MAC

• The TLS connection retries after each failure so the attacker can try multiple times

• Goal is to determine the status each byte in the authentication cookie which is in a known position


• It detects the timing of the error response

• Which is different if the guess is right or wrong

• Even though the underlying algorithm was "proved" secure!


• So always do Encrypt then MAC since,  
once again, it is more mistake tolerant
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The best MAC construction: 
HMAC
• Idea is to turn a hash function into a MAC

• Since hash functions are often much  

faster than encryption

• While still maintaining the properties of  

being a cryptographic hash


• Reduce/expand the key to a  
single hash block


• XOR the key with the i_pad

• 0x363636... (one hash block long)


• Hash ((K ⊕ i_pad) || message)

• XOR the key with the o_pad

• 0x5c5c5c...


• Hash ((K ⊕ o_pad) || first hash)
 52

function hmac (key, message) { 
    if (length(key) > blocksize) { 
        key = hash(key) 
    } 
    while (length(key) < blocksize) { 
       key = key || 0x00 
    } 
   o_key_pad = 0x5c5c... ⊕ key 
   i_key_pad = 0x3636... ⊕ key    
    return hash(o_key_pad ||  
                hash(i_key_pad || message)) 
} 
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Why This Structure?

• i_pad and o_pad are slightly arbitrary

• But it is necessary for security for the two values 

to be different

• So for paranoia chose very different bit patterns


• Second hash prevents appending data

• Otherwise attacker could add more to the 

message and the HMAC and it would still be a 
valid HMAC for the key


• Wouldn't be a problem with the key at the end but at 
the start makes it easier to capture intermediate 
HMACs


• Is a Pseudo Random Function if the 
underlying hash is a PRF

• AKA if you can break this, you can break the hash!
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function hmac (key, message) { 
    if (length(key) > blocksize) { 
        key = hash(key) 
    } 
    while (length(key) < blocksize) { 
       key = key || 0x00 
    } 
   o_key_pad = 0x5c5c... ⊕ key 
   i_key_pad = 0x3636... ⊕ key    
    return hash(o_key_pad ||  
                hash(i_key_pad || message)) 
} 
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Great Properties of HMAC...

• It is still a hash function!

• So all the good things of a cryptographic hash: 

An attacker or even the recipient shouldn't be able to calculate M given 
HMAC(M,K) 

• An attacker who doesn't know K can't even verify if HMAC(M,K) == M

• Very different from the hash alone, and potentially very useful: 

Attacker can't even brute force try to find M based on HMAC(M,K)!


• Its probably safe if you screw up and use the same key for 
both MAC and Encrypt

• Since it is a different algorithm than the encryption function...

• But you shouldn't do this anyway!
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Considerations when using MACs

• Along with messages, can use for data at rest

• E.g. laptop left in hotel, providing you don’t store the key on the laptop

• Can build an efficient data structure for this that doesn’t require re-MAC’ing over entire disk 

image when just a few files change


• MACs in general provide no promise not to leak info about message

• Compute MAC on ciphertext if this matters

• Or just use HMAC, which does promise not to leak info if the  

underlying hash function doesn't


• NEVER use the same key for MAC and  
Encryption...

• Known "FU-this-is-crypto" scenarios reusing an  

encryption key for MAC in some algorithms when its the  
same underlying block cipher for both
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Plus AEAD Encryption Modes...

• The latest block cipher modes are "AEAD":

• Authenticated Encryption with Additional Data


• Provides both integrity and confidentiality over the data

• With integrity also provided for the "Additional Data"


• Used right, these are great

• Assuming you use a library...


• Used wrong...

• The AEAD modes are built for "performance", which means parallelization, 

which means CTR mode, which means IV reuse is a disaster!
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