
Computer Science 161 Fall 2020 Weaver

 
Crypto 2

 1

Computer Science 161 Fall 2020 Weaver

Modern Encryption: 
Block cipher
• A function E : {0, 1}b ×{0, 1}k → {0, 1}b. Once we fix the key K (of size k

bits), we get:

• EK : {0,1}b → {0,1}b denoted by EK(M) = E(M,K).

• (and also D(C,K), E(M,K)’s inverse)

• Three properties:

• Correctness:

• EK(M) is a permutation (bijective function) on b-bit strings

• Bijective ⇒ invertible

• Efficiency: computable in 𝜇sec’s

• Security:

• For unknown K, “behaves” like a random permutation

• Provides a building block for more extensive encryption
 2

Computer Science 161 Fall 2020 Weaver

DES (Data Encryption Standard)

• Designed in late 1970s

• Block size 64 bits, key size 56 bits

• NSA influenced two facets of its design

• Altered some subtle internal workings in a mysterious way

• Reduced key size 64 bits ⇒ 56 bits

• Made brute-forcing feasible for attacker with massive (for the time) computational resources

• Remains essentially unbroken 40 years later!

• The NSA’s tweaking hardened it against an attack “invented” a decade later

• However, modern computer speeds make it completely unsafe due
to small key size

 3

Computer Science 161 Fall 2020 Weaver

Today’s Go-To Block Cipher: 
AES (Advanced Encryption Standard)
• >20 years old, standardized >15 years ago...

• Block size 128 bits

• Key can be 128, 192, or 256 bits

• 128 remains quite safe; sometimes termed “AES-128”, 

paranoids use 256b

• As usual, includes encryptor and (closely-related) decryptor

• How it works is beyond scope of this class… 

But if you are curious: http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

• Not proven secure

• But no known flaws

• The NSA uses it for Top Secret communication with 256b keys: 

stuff they want to be secure for 40 years including possibly unknown breakthroughs!

• so we assume it is a secure block cipher

 4

http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

Computer Science 161 Fall 2020 Weaver

AES is also effectively free…

• Computational load is remarkably low

• Partially why it won the competition: 

There were 3 really good finalists from a performance viewpoint:  
Rijndael (the winner), Twofish, Serpent 
One OK: RC6 
One ugggly: Mars

• On any given computing platform: 
Rinjdael was never the fastest

• But on every computing platform: 
Rinjdael was always the second fastest

• The other two good ones always had a "this is the compute platform they are bad at"

• And now CPUs include dedicated AES support
 5

Computer Science 161 Fall 2020 Weaver

How Hard Is It To Brute-Force 128-bit Key?

• 2128 possibilities – well, how many is that?

• Handy approximation: 210 ≈ 103

• 2128 = 210*12.8 ≈ (103)12.8 ≲ (103)13 ≈ 1039

 6

Computer Science 161 Fall 2020 Weaver

How Hard Is It To Brute-Force 128-bit Key?

• 2128 possibilities – well, how many is that?

• Handy approximation: 210 ≈ 103

• 2128 = 210*12.8 ≈ (103)12.8 ≲ (103)13 ≈ 1039

• Say we build massive hardware that can try 109 (1 billion) keys in 1
nanosecond (a billionth of a second)

• So 1018 keys/sec

• Thus, we’ll need ≈ 1021 sec

• How long is that?

• One year ≈ 3x107 sec

• So need ≈ 3x1013 years ≈ 30 trillion years

 7

Computer Science 161 Fall 2020 Weaver

What about a 256b key in a year?

• Time to start thinking in
astronomical numbers:

• If each brute force device is 1mm3...

• We will need 1052 of these things...

• 1043 cubic meters...

• Or the volume of 7x1015 suns!

• Yes, 7 petasuns worth of sci-fi nanotech!

• Brute force is not a factor against
modern block ciphers... 
IF the key is actually random!

 8

Computer Science 161 Fall 2020 Weaver

Issues When Using the Building Block

• Block ciphers can only encrypt messages of a certain size

• If M is smaller, easy, just pad it (more later)

• If M is larger, can repeatedly apply block cipher

• Particular method = a “block cipher mode”

• Tricky to get this right!

• If same data is encrypted twice, attacker knows it is the
same

• Solution: incorporate a varying, known quantity (IV = “initialization vector”)

 9

Computer Science 161 Fall 2020 Weaver

So enter "Modes of operation"

• We don't just run the block cipher on its own...

• But instead as part of a larger "Mode of Operation":

• Combining the block cypher as the core of a larger function

 10

Computer Science 161 Fall 2020 Weaver

Electronic Code Book (ECB) mode

• Simplest block cipher mode

• Split message into b-bit blocks P1, P2, …

• Each block is enciphered independently, separate from the

other blocks 
	Ci = E(Pi, K)

• Since key K is fixed, each block is subject to the same
permutation

• (As though we had a “code book” to map each possible input value to its
designated output)

 11

Computer Science 161 Fall 2020 Weaver

 12

P1 P2 P3

C1 C2 C3

ECB Encryption

Computer Science 161 Fall 2020 Weaver

 13

P1 P2 P3

C1 C2 C3

ECB Decryption

Problem: Relationships between Pi’s reflected in Ci’s

Computer Science 161 Fall 2020 Weaver

IND-CPA and ECB?

• Of course not!

• M,M' is 2x the block length...

• M = all 0s

• M' = 0s for 1 block, 1s for the 2nd block

• This has catastrophic implications in the real world...

 14

Computer Science 161 Fall 2020 Weaver

 15

Original image, RGB values split into a bunch of b-bit blocks

Computer Science 161 Fall 2020 Weaver

 16

Encrypted with ECB and interpreting ciphertext directly as RGB

Computer Science 161 Fall 2020 Weaver

 17

Later (identical) message again encrypted with ECB

Computer Science 161 Fall 2020 Weaver

Building a Better Cipher Block Mode

• Ensure blocks incorporate more than just the plaintext to
mask relationships between blocks. Done carefully, either of
these works:

• Idea #1: include elements of prior computation

• Idea #2: include positional information

• Plus: need some initial randomness

• Prevent encryption scheme from determinism revealing relationships between

messages

• Introduce initialization vector (IV):

• IV is a public nonce, a use-once unique value: Easiest way to get one is generate it

randomly
 18

Computer Science 161 Fall 2020 Weaver

Nonces

• A nonce is a public use-once value

• EG, as the initialization vector

• It is critical to never ever ever ever reuse a nonce

• But if the nonce is 128b or greater, generate it randomly and you are good

• Depending on the algorithm, it can be mildly bad

• Eh, you leak a little information...

• To catastrophic,  
CATASTROPHIC FAILURE!

 19

Computer Science 161 Fall 2020 Weaver

CBC Encryption

 20

P1 P2 P3

C1 C2 C3

E(Plaintext, K):
• If b is the block size of the block cipher, split the plaintext

in blocks of size b: P1, P2, P3,..
• Choose a random IV (do not reuse for other messages)
• Now compute:

• Final ciphertext is (IV, C1, C2, C3). This is what Eve sees.

Computer Science 161 Fall 2020 Weaver

CBC Decryption

 21

P1 P2 P3

C1 C2 C3

D(Ciphertext, K):
• Take IV out of the ciphertext
• If b is the block size of the block cipher, split the ciphertext

in blocks of size b: C1, C2, C3, …

• Now compute this:

• Output the plaintext as the concatenation of P1, P2, P3, ...

Computer Science 161 Fall 2020 Weaver

 22

Original image, RGB values split into a bunch of b-bit blocks

Computer Science 161 Fall 2020 Weaver

 23

Encrypted with CBC: Should be indistinguishable from random noise

Computer Science 161 Fall 2020 Weaver

CBC Mode...

• Widely used

• Issue: sequential encryption, can't parallelize encryption

• Must finish encrypting block b before starting b+1

• But you can parallelize decryption

• Parallelizable alternative: CTR (Counter) mode

• Security: If no reuse of nonce, both are provably secure 

(IND-CPA) assuming the underlying block cipher is secure

 24

Computer Science 161 Fall 2020 Weaver

And padding…

• What happens if length(M) % BlockSize != 0?

• Need to “Pad” to add bits

• Two main options:

• Send the length at the start of the message…

• And then who cares what you add on at the end

• Use a padding scheme that you can add on to the end…

• EG, PKCS#7:

• If M % BlockSize == Blocksize - 1: Pad with 0x01

• If M % BlockSize == Blocksize - 2: Pad with 0x02 0x02 

….

• If M % BlockSize == 0: Pad a full block with the block size (so for AES 0x20 0x20…)

 25

Computer Science 161 Fall 2020 Weaver

CTR Mode Encryption

 26

(Nonce = Same as IV)

C1 C2 C3

P1 P2 P3

Important that nonce/IV does not
repeat across different encryptions.
Choose at random!

Computer Science 161 Fall 2020 Weaver

Counter Mode Decryption

 27

Note, CTR decryption uses block
cipher’s encryption, not decryption

C1 C2 C3

P1 P2 P3

Computer Science 161 Fall 2020 Weaver

Thoughts on CTR mode...

• CTR mode is actually a stream cipher (more on those later):

• You no longer need to worry about padding which is nice

• CTR mode is fully parallelizeable for encryption as well as
decryption

• In high performance applications you can always just throw more compute
and encrypt faster

 28

Computer Science 161 Fall 2020 Weaver

NEVER EVER EVER use CTR Mode! 
(Well, if you are paranoid…)
• What happens if you reuse the IV in CBC...

• Its bad but not catastrophic: 

you fail IND-CPA but the damage may be tolerable:

• M = {A,A,B} 

M' = {A,B,B} 
Adversary can see that the first part of M and M' are the same, but not the later part

• What happens if you reuse the IV in CTR mode?

• It is exactly like reusing a one-time pad!

• An example of a system which fails badly...

• CTR mode is theoretically as secure as CBC when 

used properly...

• But when it is misused it fails catastrophically: 

Personal bias: I believe we need systems that are still  
robust when implemented incorrectly

 29

Computer Science 161 Fall 2020 Weaver

This was the summer 61A exam mistake!

• They used a python AES library

• A bad library for a whole host of reasons but...

• When they invoked CTR mode encryption...

• They never specified an IV... 

Just assuming the library would use a RANDOM IV

• Nope, library defaults to a 0 IV

• And since multiple different versions of the exam are all
encrypted with the same key...

• ALL SECURITY WAS LOST!
 30

Computer Science 161 Fall 2020 Weaver

What To Use Then?

• What if you want a cipher mode where you don't need to
pad (like CTR mode)?

• But you want the robust to screwup properties of CBC mode?

• Idea: lets do it CTR-like (xor plaintext with block cipher
output), but...

• Instead of the next block input being an incremented
counter... 
have the next block be the previous ciphertext

• Still lacks integrity however, we'll fix that next time...
 31

Computer Science 161 Fall 2020 Weaver

CFB Encryption

 32

Computer Science 161 Fall 2020 Weaver

CFB Decryption

 33

Computer Science 161 Fall 2020 Weaver

CFB doesn't need to pad...

• Since the encryption is XORed with the plaintext...

• You can end on a "short" block without a problem

• So more convenient than CBC mode

• But similar security properties as CBC mode

• Sequential encryption, parallel decryption

• Same error propagation effects

• Effectively the same for IND-CPA

• But a bit worse if you reuse the IV

 34

Computer Science 161 Fall 2020 Weaver

Mallory the Manipulator

• Mallory is an active attacker

• Can introduce new messages (ciphertext)

• Can “replay” previous ciphertexts

• Can cause messages to be reordered or discarded

• A “Man in the Middle” (MITM) attacker

• Can be much more powerful than just eavesdropping

 35

Computer Science 161 Fall 2020 Weaver

Encryption Does Not Provide Integrity

• Simple example: Consider a block cipher in CTR mode...

• Suppose Mallory knows that Alice sends to Bob “Pay Mal

$0100”. Mallory intercepts corresponding C

• M = “Pay Mal $0100”. C = “r4ZC#jj8qThMK”

• M10..13 = “0100”. C10..13 = “ThMK”

• Mallory wants to replace some 
bits of C...

 36

Computer Science 161 Fall 2020 Weaver

Encryption Does Not Provide Integrity

• Mallory computes

• “0100” ⨁ C10..13

• Tells Mallory that section of the counter XOR: 

Remember that CTR mode computes Ek(IV||CTR) and XORs it with the corresponding
part of the message

• C'10..13 = "9999" ⨁ “0100” ⨁ C10..13

• Mallory now forwards to Bob a full C' = C0..9||C'10..13||C14...

• Bob will decrypt the message as "Pay Mal $9999"...

• For a CTR mode cipher, Mallory can in general replace any known message

M with a message M' of equal length!
 37

Computer Science 161 Fall 2020 Weaver

Integrity and Authentication

• Integrity: Bob can confirm that what he’s received is exactly the message M that
was originally sent

• Authentication: Bob can confirm that what he’s received was indeed generated
by Alice

• Reminder: for either, confidentiality may-or-may-not matter

• E.g. conf. not needed when Mozilla distributes a new Firefox binary

• Approach using symmetric-key cryptography:

• Integrity via MACs (which use a shared secret key K)

• Authentication arises due to confidence that only Alice & Bob have K

• Approach using public-key cryptography (later on):

• “Digital signatures” provide both integrity & authentication together

• Key building block: cryptographically strong hash functions
 38

Computer Science 161 Fall 2020 Weaver

Hash Functions

• Properties

• Variable input size

• Fixed output size (e.g., 256 bits)

• Efficient to compute

• Pseudo-random (mixes up input extremely well): 

A single bit changes on the input and ~1/2 the bits should change on the output 
 

• Provides a “fingerprint” of a document

• E.g. “shasum -a 256 <exams/mt1-solutions.pdf” prints 

0843b3802601c848f73ccb5013afa2d5c4d424a6ef477890ebf8db9bc4f7d13d

 39

Computer Science 161 Fall 2020 Weaver

Cryptographically Strong Hash Functions

• A collision occurs if x≠y but  
Hash(x) = Hash(y)

• Since input size > output size, collisions do happen

• A cryptographically strong Hash(x)  
provides three properties:

• One-way: h = Hash(x) easy to compute,  
but not to invert.

• Intractable to find any x' s.t. Hash(x') = h,  
for a given h

• Also termed “preimage resistant”

 40

H(🐮) =

Computer Science 161 Fall 2020 Weaver

Cryptographically Strong Hash Functions

• The other two properties of a cryptographically strong Hash(x):

• Second preimage resistant: given x, intractable to find x' s.t. Hash(x) = Hash(x')

• Collision resistant: intractable to find any x, y s.t. Hash(x) = Hash(y)

• Collision resistant ⟹ Second preimage resistant

• We consider them separately because given Hash might differ in how well it resists

each

• Also, the Birthday Paradox means that for n-bit Hash, finding x-y pair takes only ≈ 2n/2

hashes

• Vs. potentially 2n tries for x': Hash(x) = Hash(x') for given x

• Plus a hash function should look "random"

• A "PRF" or Pseudo-Random Function

 41

Computer Science 161 Fall 2020 Weaver

Cryptographically Strong Hash Functions, con’t

• Some contemporary hash functions

• MD5: 128 bits

• broken – lack of collision resistance

• Collisions for the heck of it: https://shells.aachen.ccc.de/~spq/md5.gif  

An MD5 "hash quine": an animated GIF that shows its own hash

• SHA-1: 160 bits broken spring 2017, but was known to be weak yet still used...

• SHA-256/SHA-384/SHA-512: 256, 384, 512 bits in the SHA-2 family, at least not currently broken

• SHA-3: New standard! Yayyy!!!! (Based on Keccak, again 256b, 384b, and 512b options)

• Provide a handy way to unambiguously refer to large documents

• If hash can be securely communicated, provides integrity

• E.g. Mozilla securely publishes SHA-256(new FF binary)

• Anyone who fetches binary can use “cat binary | shasum -a 256” to confirm it’s the right one, untampered

• Not enough by themselves for integrity, since functions are completely known –
Mallory can just compute revised hash value to go with altered message

 42

Computer Science 161 Fall 2020 Weaver

SHA-256...

• SHA-256/SHA-384 are two parameters for the SHA-2 hash
algorithm, returning 256b or 384b hashes

• Works on blocks with a truncation routine to make it act on sequences of
arbitrary length

• Is vulnerable to a length-extension attack: s is secret

• Mallory knows len(s), H(s)
• Mallory can use this to calculate H(s||M) for an M of Mallory's construction

• Works because all the internal state at the point of calculating H(s||...) is derivable

from H(s) and len(s)

• New SHA-3 standard (Keccak) does not have this property
 43

Computer Science 161 Fall 2020 Weaver

Stupid Hash Tricks: 
Sample A File...
• BlackHat Dude claims to have 150M records stolen from

Equifax...

• How can I as a reporter verify this?

• Idea: If I can have the hacker select 10 random lines...

• And in selecting them also say something about the size of the file...

• Voila! Verify those lines and I now know he's not full of BS

• Can I use hashing to write a small script which the BlackHat
Dude can run?

• Where I can easily verify that the 10 lines were sampled at random, and can't
be faked?

 44

Computer Science 161 Fall 2020 Weaver

Sample a File

 45

#!/usr/bin/env python
import hashlib, sys
hashes = {}

for line in sys.stdin:
 line = line.strip()
 for x in range(10):
 tmp = "%s-%i-nickrocks" % (line, x)
 hashval = hashlib.sha256(tmp)
 h = hashval.digest()
 if x not in hashes or hashes[x][0] > h:
 hashes[x] = (h, hashval, tmp)

for x in range(10):
 h, hashval, val = hashes[x]
 print "%s=\"%s\"" % (hashval.hexdigest(), val)

Computer Science 161 Fall 2020 Weaver

Why does this work?

• For each x in range 0-9...

• Calculates H(line||x)

• Stores the lowest hash matching so far

• Since the hash appears random...

• Each iteration is an independent sample from the file

• The expected value of H(line||x) is a function of the size of the file: 

More lines, and the value is smaller

• To fake it...

• Would need to generate fake lines, and see if the hash is suitably low

• Yet would need to make sure these fake lines semantically match!

• Thus you can't just go "John Q Fake", "John Q Fakke", "Fake, John Q", etc...

 46

Computer Science 161 Fall 2020 Weaver

Message Authentication Codes (MACs)

• Symmetric-key approach for integrity

• Uses a shared (secret) key K

• Goal: when Bob receives a message, can confidently determine it hasn’t
been altered

• In addition, whomever sent it must have possessed K 

	 (⇒ message authentication, sorta...)

• Conceptual approach:

• Alice sends {M, T} to Bob, with tag T = MAC(K, M)

• Note, M could instead be C = EK'(M), but not required

• When Bob receives {M', T'}, Bob checks whether T' = MAC(K, M')

• If so, Bob concludes message untampered, came from Alice

• If not, Bob discards message as tampered/corrupted

 47

Computer Science 161 Fall 2020 Weaver

Requirements for Secure MAC Functions

• Suppose MITM attacker Mallory intercepts Alice’s {M, T} transmission …

• … and wants to replace M with altered M*
• … but doesn’t know shared secret key K

• We have secure integrity if MAC function 
T = MAC(M, K) has two properties:

• Mallory can’t compute T* = MAC(M*, K)

• Otherwise, could send Bob {M*, T*} and fool him

• Mallory can’t find M** such that MAC(M**, K) = T

• Otherwise, could send Bob {M**, T} and fool him

• These need to hold even if Mallory can observe many {Mi, Ti} pairs,
including for Mi’s she chose

 48

Computer Science 161 Fall 2020 Weaver

MAC then Encrypt or  
Encrypt then MAC
• You should never use the same key for the MAC and the Encryption

• Some MACs will break completely if you reuse the key

• Even if it is probably safe (eg, AES for encryption, HMAC for MAC) its still a bad idea

• MAC then Encrypt:

• Compute T = MAC(M,Kmac), send C = E(M||T,Kencrypt)

• Encrypt then MAC:

• Compute C = E(M,Kencrypt), T = MAC(C,Kmac),  

send C||T

• Theoretically they are the same, but...

• Once again, its time for ...

 49

Computer Science 161 Fall 2020 Weaver

HTTPS Authentication in 
Practice
• When you log into a web site, it sets a "cookie" in your browser

• All subsequent requests include this cookie so the web server knows who you are

• If an attacker can get your cookie...

• They can impersonate you on the "Secure" site

• And the attacker can create multiple  
tries

• On a WiFi network, inject a bit of JavaScript 

that repeatedly connects to the site

• While as a man-in-the-middle to manipulate  

connections

 50

Computer Science 161 Fall 2020 Weaver

The TLS 1.0 "Lucky13" Attack: 
"F-U, This is Cryptography"
• HTTPS/TLS uses MAC then Encrypt

• With CBC encryption

• The Lucky13 attack changes the cipher text in an attempt to discover the
state of a byte

• But can't predict the MAC

• The TLS connection retries after each failure so the attacker can try multiple times

• Goal is to determine the status each byte in the authentication cookie which is in a known position

• It detects the timing of the error response

• Which is different if the guess is right or wrong

• Even though the underlying algorithm was "proved" secure!

• So always do Encrypt then MAC since,  
once again, it is more mistake tolerant

 51

Computer Science 161 Fall 2020 Weaver

The best MAC construction: 
HMAC
• Idea is to turn a hash function into a MAC

• Since hash functions are often much  

faster than encryption

• While still maintaining the properties of  

being a cryptographic hash

• Reduce/expand the key to a  
single hash block

• XOR the key with the i_pad

• 0x363636... (one hash block long)

• Hash ((K ⊕ i_pad) || message)

• XOR the key with the o_pad

• 0x5c5c5c...

• Hash ((K ⊕ o_pad) || first hash)
 52

function hmac (key, message) {
 if (length(key) > blocksize) {
 key = hash(key)
 }
 while (length(key) < blocksize) {
 key = key || 0x00
 }
 o_key_pad = 0x5c5c... ⊕ key
 i_key_pad = 0x3636... ⊕ key
 return hash(o_key_pad ||
 hash(i_key_pad || message))
}

Computer Science 161 Fall 2020 Weaver

Why This Structure?

• i_pad and o_pad are slightly arbitrary

• But it is necessary for security for the two values

to be different

• So for paranoia chose very different bit patterns

• Second hash prevents appending data

• Otherwise attacker could add more to the

message and the HMAC and it would still be a
valid HMAC for the key

• Wouldn't be a problem with the key at the end but at
the start makes it easier to capture intermediate
HMACs

• Is a Pseudo Random Function if the
underlying hash is a PRF

• AKA if you can break this, you can break the hash!

 53

function hmac (key, message) {
 if (length(key) > blocksize) {
 key = hash(key)
 }
 while (length(key) < blocksize) {
 key = key || 0x00
 }
 o_key_pad = 0x5c5c... ⊕ key
 i_key_pad = 0x3636... ⊕ key
 return hash(o_key_pad ||
 hash(i_key_pad || message))
}

Computer Science 161 Fall 2020 Weaver

Great Properties of HMAC...

• It is still a hash function!

• So all the good things of a cryptographic hash: 

An attacker or even the recipient shouldn't be able to calculate M given
HMAC(M,K)

• An attacker who doesn't know K can't even verify if HMAC(M,K) == M

• Very different from the hash alone, and potentially very useful: 

Attacker can't even brute force try to find M based on HMAC(M,K)!

• Its probably safe if you screw up and use the same key for
both MAC and Encrypt

• Since it is a different algorithm than the encryption function...

• But you shouldn't do this anyway!

 54

Computer Science 161 Fall 2020 Weaver

Considerations when using MACs

• Along with messages, can use for data at rest

• E.g. laptop left in hotel, providing you don’t store the key on the laptop

• Can build an efficient data structure for this that doesn’t require re-MAC’ing over entire disk

image when just a few files change

• MACs in general provide no promise not to leak info about message

• Compute MAC on ciphertext if this matters

• Or just use HMAC, which does promise not to leak info if the  

underlying hash function doesn't

• NEVER use the same key for MAC and  
Encryption...

• Known "FU-this-is-crypto" scenarios reusing an  

encryption key for MAC in some algorithms when its the  
same underlying block cipher for both

 55

Computer Science 161 Fall 2020 Weaver

Plus AEAD Encryption Modes...

• The latest block cipher modes are "AEAD":

• Authenticated Encryption with Additional Data

• Provides both integrity and confidentiality over the data

• With integrity also provided for the "Additional Data"

• Used right, these are great

• Assuming you use a library...

• Used wrong...

• The AEAD modes are built for "performance", which means parallelization,

which means CTR mode, which means IV reuse is a disaster!
 56

