Computer Science 161 Fall 2020

THE MAIN VALUE OF UNDERSTANDING
BLOCKGHAINS'IS SO THAT YOU

SOLVE=

E

«

IF ANYONE SAYS "BLOCKCHAIN CAN SOLVEX" REALIZE THE TECHNICAL REASONS WHY
THEY KNOW NOTHING ABOUT X AND SHOULD BE munn _YOU NEVER NEED ONE=CQPWNALLTHETHINGS

Administrivial

Computer Sc i1 202

» Project 1 due Friday the 25th
* Homework 2 due Monaday the 28th

 Reminder:

e /Zoom chat for conversation
o Zoom Q&A for Questions & Answers

Message Authentication Codes (MACS)

Computer Science 161 Fall 2020

- Symmetric-key approach for integrity
* Uses a shared (secret) key K

- Goal: when Bob receives a message, can confidently determine it hasn’t

been altered

* |n addition, whomever sent it must have possessed K
(= message authentication, sorta...)

- Conceptual approach:
* Alice sends {M, T} to Bob, with tag T = MAC(K, M)
Note, M could instead be C = Ek'(M), but not required

* When Bob receives {M', T'}, Bob checks whether T' = MAC(K, M')

If so, Bob concludes message untampered, came from Alice
If not, Bob discards message as tampered/corrupted

Requirements for Secure MAC Functions

Computer Science 161 Fall 2020 Weaver

- Suppose MITM attacker Mallory intercepts Alice’s {M, T} transmission ...
* ... and wants to replace M with altered M*

* ... but doesn’t know shared secret key K

- We have secure integrity if MAC function
T = MAC(M, K) has two properties:
 Mallory can’t compute T* = MAC(M*, K)
Otherwise, could send Bob {M*, T*} and fool him

* Mallory can’t find M** such that MAC(M**, K) =T
Otherwise, could send Bob {M**, T} and fool him

- These need to hold even if Mallory can observe many {M, Ti} pairs,
including for Mi’s she chose

MAC then Encrypt or
Encrypt then MAC

Computer Science 161 Fall 2020

* You should never use the same key for the MAC and the Encryption

« Some MACs will break completely if you reuse the key
 Even if it is probably safe (eg, AES for encryption, HMAC for MAC) its still a bad idea

» MAC then Encrypt:
 Compute T = MAC(M,Kmac), send C = E(M||T,Kencrypt)

- Encrypt then MAC:

° COmpUte C = E(M,Kencrypt), T = MAC(M,Kmac),
send C||T

- Theoretically they are the same, but...
* Once again, its time for ...

Weaver

1.

£

"wk

=
\rm S RYPTONI

f

‘ |\v

. \
| ‘.‘.

HTTPS Authentication In
Practice

Computer Science 161 Fall 2020 Weaver

- When you log into a web site, It sets a "cookie” In your browser
» All subsequent requests include this cookie so the web server knows who you are

- |f an attacker can get your cookie...
* They can impersonate you on the "Secure” site

- And the attacker can create multiple

tries .

* On a WiFi network, inject a bit of JavaScript F‘“ !

that repeatedly connects to the site | & & ;: = %._
» While as a man-in-the-middle to manipulate E S ‘%ﬂ:g e oy
connections NI -

‘\ el el
THIS IS CRYPTOII.

The TLS 1.0 "Lucky13" Attack:
"F-U, This is Cryptography"

Computer Science 161 Fall 2020

» HTTPS/TLS uses MAC then Encrypt
* With CBC encryption

» The Lucky13 attack changes the cipher text in an attempt to discover the
state of a byte

 But can't predict the MAC

 The TLS connection retries after each failure so the attacker can try multiple times
Goal is to determine the status each byte in the authentication cookie which is in a known position

» |t detects the timing of the error response

 Which is different if the guess is right or wrong
Even though the underlying algorithm was "proved" secure!

- So always do Encrypt then MAC since,
once again, it is more mistake tolerant

o T, & il

a %

N\ ISIS'CRYPTOI!
- - -4 =

imgfiip.com

P - S . . | | ’
5, SETh — e
\ '::9. ‘e

\\‘,'
-~
"~y

The best MAC construction:
HMAC

Computer Science 161 Fall 2020

- |dea is to turn a hash function into a MAC

 Since hash functions are often much

faster than encryption function hmac (key, message) ({
if (length(key) > blocksize) ({

* While still maintaining the properties of key = hash (key)

being a cryptographic hash }
o Reduce/expand the key to a while (length (key) < blocksize) {
: key = key || 0x00
single hash block \
» XOR the key with the i_pad o_key pad = Ox>5c>c... @ key
i key pad = 0x3636... ® key
 (0x363630... (one hash block Iong) return hash(o_key_pad | |
- Hash (K @ i_pad) || message) } hash(i_key pad || message))
- XOR the key with the o_pad
* (Oxbdcscoe...

- Hash ((K ® o_pad) || first hash)

Why This Structure?

Computer Science 161 Fall 2020

* |_pad and o_pad are slightly arbitrary

* But it is necessary for security for the two values
to be different function hmac (key, message) {

if (length(key) > blocksize) ({

So for paranoia chose very different bit patterns key = hash (key)

- Second hash prevents appending data e (length (key) < blocksize) |
* Otherwise attacker could add more to the key = key || 0x00
message and the HMAC and it would still be a }
valid HMAC for the key o_key pad = 0x5cdc... @ key

Wouldn't be a problem with the key at the end but at 1_key pad = 0x3636... ® key

the start makes it easier to capture intermediate return hash(o_key_pad ||
HMACS hash (1 key pad || message))

 |s a Pseudo Random Function if the
underlying hash is a PRF
 AKA if you can break this, you can break the hash!

Great Properties of HMAC...

Computer Science 161 Fall 2020

|t Is still a hash function!

* So all the good things of a cryptographic hash:
An attacker or even the recipient shouldn't be able to calculate M given
HMAC(M,K)

* An attacker who doesn't know K can't even verify if HMAC(M,K) ==

Very different from the hash alone, and potentially very useful:
Attacker can't even brute force try to find M based on HMAC(M,K)!

- Its probably safe if you screw up and use the same key for
both MAC and Encrypt

* Since it is a different algorithm than the encryption function...
 But you shouldn't do this anyway!

10

Considerations when using MACs

Computer Science 161 Fall 2020

- Along with messages, can use for data at rest

* E.g. laptop left in hotel, providing you don’t store the key on the laptop

* (Can build an efficient data structure for this that doesn’t require re-MAC’ing over entire disk
image when just a few files change

- MACs in general provide no promise not to leak info about message
 Compute MAC on ciphertext if this matters

* Or just use HMAC, which does promise not to leak info if the
underlying hash function doesn't

- NEVER use the same key for MAC and
Encryption...

F-Il!! &

* Known ."FU—this—is—cryptp" scenarios reusing an \‘V S Ji. ,
encryption key for MAC in some algorithms when its the ,.. E"“

same underlying block cipher for both ‘-“" cnmu ! ' _

imgfiip.com

Plus AEAD Encryption Modes...

Computer Science 161 Fall 2020

- The latest block cipher modes are "AEAD":
* Authenticated Encryption with Additional Data

» Provides both integrity and confidentiality over the data
* With integrity also provided for the "Additional Data"

- Used right, these are great
* Assuming you use a library...

- Used wrong...

* The AEAD modes are built for "performance”, which means parallelization,
which means CTR mode, which means IV reuse is a disaster!

12

A Lot Of Uses for
Random Numbers...

Computer Science 161 Fa

- The key foundation for all modern cryptographic systems is
often not encryption but these "random" numbers!

* SO0 many times you need to get something random:
* A random cryptographic key
* A random initialization vector
A "nonce" (use-once item)
* A unique identifier
« Stream Ciphers

* It an attacker can predict a random number things can
catastrophically fall

13

Breaking Slot Machines

Computer Science 161 Fall 2019

Some casinos experienced unusual bad "luck”

* The suspicious players would wait and then all of a sudden RUSSIANS ENGINEER A
DDITTIANT QTAT MACHINT

try to play IN EARLY JUNE 2014, accountants at the Lumiere Place
_) Casino in St. Louis noticed that several of their slot
Th e S | O't m aC h | n eS h ave predICtable p R N G machines had—just for a couple of days—gone haywire. The
government-approved software that powers such machines
® Wthh was based on the current 'tlme & a Seed gives the house a fixed mathematical edge, so that casinos
can be certain of how much they’ll earn over the long haul—
SO p I ay a I |'|:'t I e o say, 7.129 cents for every dollar played. But on June 2 and 3, a
number of Lumiere’s machines had spit out far more money
e With a cell phOne watchi ng than they’d consurned desplte not awardlng any major

 And now you know when to press "spin” to be more likely

to win | F"“;“k ;‘-
Oh, and this never effected Vegas! 2 i H

~wh :

* Evaluation standards for Nevada slot machines
specifically designed to address this sort of issue

- 'i ‘@
THIS IS‘BIIYI"I'II'!'

imgfiip.com

Breaking Bitcoin Wallets

Computer Science 161 Fall 2019

blockchain.info supports "web wallets”
» Javascript that protects your Bitcoin

Improvments to RNG

. zootreeves committed on Dec 7, 2014 1 parent b@d5639

Showing 1 changed file with 26 additions and 28 deletions.

The private key for Bitcoin needs to be === s

random
* Because otherwise an attacker can spend the
money

An "Improvment" [sic] to the RNG
reduced the entropy (the actual
randomness)

* Any wallet created with this improvment was brute-

forceable and could be stolen ':' —/ ,w-'-L -
- IT’S GONE

TRUE Random Numbers

Computer Science 161 Fall 2019

- True random numbers generally require a physical process

Common circuit is an unusable ring oscillator built into the CPU
* |t is then sampled at a low rate to generate true random bits which are then fed into a pRNG on the

CPU

Other common sources are human
activity measured at very fine time scales

* Keystroke timing, mouse movements, etc
"Wiggle the mouse to generate entropy for a key"

* Network/disk activity which is often human driven

» More exotic ones are possible:

* Cloudflare has a wall of lava lamps that are recorded
by a HD video camera which views the lamps through a
rotating prism: It is just one source of the randomness

T —————— 3 1'-" -

YEVEYRYRY YAy (Y Y Y Y Y Y FPY OYOYOY
|

aaaaa l'lllllllllllllllllll
!llll‘!l!llllllllllllllll

| |
1!!!!!111111]111111

) J R , ' nnnnn

.»;L’.Lf. 1 x?Ji‘ 11 x

JJJ’J”ﬂ “ﬁ 1'\ Rk

1* rwrrrb.hkt‘t

| 4 3

Combining Entropy

Computer Science 161 Fall 2019

- Many physical entropy sources are biased

 Some have significant biases: e.g. a coin that flips "heads"” 90% of the time!
» Some aren't very good: e.g. keystroke timing at a microsecond granularity

- The general procedure is to combine various sources of entropy

- The goal is to be able to take multiple crappy sources of entropy

 Measured in how many bits:
A single flip of a fair coin is 1 bit of entropy

 And combine into a value where the entropy is the minimum of the sum of all
entropy sources (maxed out by the # of bits in the hash function itself)

 N-1 bad sources and 1 good source -> good pRNG state

|7

Pseudo Random Number Generators
(aka Deterministic Random Bit Generators)

Computer Science 161 Fall 2019

- Unfortunately one needs a lot of random numbers in cryptography
 More than one can generally get by just using the physical entropy source

- Enter the pRNG or DRBG

* If one knows the state it is entirely predictable
* |f one doesn't know the state it should be indistinguishable from a random string

» Three operations
* |nstantiate: (aka Seed) Set the internal state based on the real entropy sources

 Reseed: Update the internal state based on both the previous state and additional entropy
The big different from a simple stream cipher

 (Generate: Generate a series of random bits based on the internal state
Generate can also optionally add in additional entropy

- instantiate(entropy)
reseed(entropy)

generate(bits, {optional entropy})
|18

Properties for the pRNG

Computer Science 161 Fall 2019

- Can a pRNG be truly random?

* No. For seed length s, it can only generate at most 2s distinct possible
sequences.

A cryptographically strong pRNG “looks” truly random to
an attacker

* Attacker cannot distinguish it from a random sequence:
If the attacker can tell a sufficiently long bitstream was generated by the
PRNG instead of a truly random source it isn't a good pRNG

19

Prediction and Rollback Resistance

Computer Science 161 Fall 2019

- A pRNG should be predictable only if you know the internal state
* |tis this predictability which is why its called "pseudo”

- |f the attacker does not know the internal state

* The attacker should not be able to distinguish a truly random string from one generated by
the pRNG

* |t should also be rollback-resistant

* Even if the attacker finds out the state at time T, they should not be able to determine what
the state was at 1-1

* More precisely, if presented with two random strings, one truly random and one generated
by the pRNG at time T-1, the attacker should not be able to distinguish between the two

* Rollback resistance isn't specifically required in a pRNG...
But it should be

20

Why "Rollback Resistance"” is Essential

Weaver

Computer Science 161 Fall 2019

« Assume attacker, at time T, is able to obtain all the internal state of
the pRNG

« How? E.g.the pRNG screwed up and instead of an |V, released the internal state, or
the pRNG is bad...

- Attacker observes how the pRNG was used

 T.4 = Random Session key
To = Nonce/lV

- Now if the pRNG doesn't resist F-Ull ™

rollback, and the attacker gets the N ;‘ &h
. ?.’, .

state at To, attacker can know the %\,E :

session key! And we are back to... \.“"s Is(cnmu T

R =4

More on Seeding and Reseeding

Computer Science 161 Fall 2019

- Seeding should take all the different physical entropy
sources avallable

* |f one source has 0 entropy, it must not reduce the entropy of the seed

* We can shove a whole bunch of low-entropy sources together and create a
high-entropy seed

- Reseeding adds in even more entropy

 F(internal_state, new material)

* Again, even if reseeding with 0 entropy, it must not reduce the entropy of the
seed

22

Probably the best pPRNG/DRBG:
HMAC_DRBG

Computer Science 161 Fall 2019

- Generally believed to be the best
 Accept no substitutes!

- Two Internal state registers, V and K
 Each the same size as the hash function's output

» Vis used as (part of) the data input into HMAC, while K is the key

» |f you can break this pRNG you can either break the underlying
hash function or break a significant assumption about how
HMAC works

* Yes, security proofs sometimes are a very good thing and actually do work

* So as long as the security proof for HMAC is correct, the security proof for HMAC_DRBG

IS correct!
23

HMAC DRBG
(Generate

Computer Science 161 Fall 2019

- The basic generation function

Remarks: function hmac drbg generate (state, n) {

* It requires one HMAC call per blocksize-bits of state tmp = ""

* Then two more HMAC calls to update the internal while (len(tmp) < N){
state state.v = hmac(state.k,state.v)

C . tmp = tmp || state.v
» Prediction resistance: }

. . . // Update state with no input
It yolu can dlstlng%nsh new K from random when you state.k = hmac(state.k, state.v || 0x00)
don't kn(_)W_ ola _K' | state.v = hmac(state.k, state.v)
You've distinguished HMAC from a random function! // Return the first N bits of tmp
Which means you've either broken the hash or the return tmp[0:N]

HMAC construction }

* Rollback resistance:

* |f you can learn old K from new K and V:
You've reversed the hash function!

24

HMAC_DRBG
Update

Computer Science 161 Fall 2019

- Used instead of the "no-input update”
when you have additional entropy on

the generate Ca” function hmac drbg update (state, input) {
state.k = hmac(state.k, state.v || 0x00
. ' i | | input)
Used standalone for both instantiate _____ _ hmac (state. k. state o)
(State_k = state.v = 0) and reseed state.k = hmac(state.k, state.v || 0x01
| | input)
(keep State-k and State.V) state.v = hmac(state.k, state.v)

- Designed so that even if the attacker |

controls the input but doesn't know K:
The attacker should not be able to
predict the new k

25

Generating true random numbers

Computer Science 161 Fall 2019

- Modern CPUs have true random number generators
 Sample a noisy circuit at a low rate or similar tricks

 These sources are biased...
 They are also slow

» So use this as an entropy source to feed a pRNG on the chip
* Now you can get random numbers quickly

» Very fast

* Vulnerable to tampering!

* You can't actually test that the pRNG circuit is 100% correct without adding paths that
could potentially sabotage the pRNG circuit

* Sabotage that can reduce effective entropy to 32b are possible
26

Stream ciphers

Computer Science 161 Fall 2019

- Block cipher: fixed-size, stateless, requires “modes” to
securely process longer messages

» Stream cipher: keeps state from processing past message
elements, can continually process new elements

- Common approach: “one-time pad on the cheap”:
 XORs the plaintext with some “random?” bits

- But: random bits # the key (as in one-time pad)

* |nstead: output from cryptographically strong pseudorandom number generator
(PRNG)

* Anyone who actually calls this a "One Time Pad" is selling snake oil!

27

Building Stream Ciphers

Computer Science 161 Fall 2019

* Encryption, given key K and message M:

e (Choose a random value IV
« E(M, K) = pRNG(K, IV) @ M

- Decryption, given key K, ciphertext C, and initialization vector IV.:
. D(C, K) = PRNG(K, IV) @ C

» Can encrypt message of any length
because pRNG can produce any F-Il!!

number of random Dbits... o\ ﬂ#‘-

* But in practice, for an n-bit seed pRNG, ,\ N“ >
stop at 272, Because, of course... .

- \ ‘@
THIS IS‘BIIYI"I'II'!'

Using a pRNG to Build
A Stream Cipher

Computer Science 161

Alice

(Small) K, IV (Small) K, IV

| |
PRNG PRNG
I I

Keystream Keystream

P — R <

M;: ith message
of plaintext

B=

29

CTR mode is (mostly) a stream cipher

Computer Science 161 Fall 2019

- E(ctr,K) should look like a series of pseudo random
numbers...

* But after a large amount it is slightly distinguishable!

» Since it Is actually a pseudo-random permutation...

* For a cipher using 128b blocks, you will never get the same 128b number until
you go all the way through the 2128 possible entries on the counter

 Reason why you want to stop after 264
If you use CTR mode in the first place

» Also very minor information leakage:
 If Gi=GC;, foril=j, it follows that M; != M;

30

UUID: Universally Unique ldentifiers

Computer Science 161 Fall 2019

* You got to have a "name" for something...
* EG, to store a location in a filesystem

* Your name must be unique...
* And your name must be unpredictable!

- Just chose a random value!

 UUID: just chose a 128b random value
Well, it ends up being a 122b random value with some signaling information

A good UUID library uses a cryptographically-secure pRNG that is properly seeded

« Often written out In hex as:
e 00112233-4455-6677-8899-aabbccddeeftf

31

What Happens When The Random Numbers
Goes Wrong...

Computer Science 161 Fall 2019

- |Insufficient Entropy:
 Random number generator is seeded without enough entropy

» Debian OpenSSL CVE-2008-0166

* In "cleaning up" OpenSSL (Debian 'bug’ #363516), the author 'fixed’ HOW DEBIAN BUG #36351b
how OpenSSL seeds random numbers WAS REALLY FIXED:
Because the code, as written, caused Purify and Valgrind to complain about
reading uninitialized memory YOU'RE USING UNINITIALIZED
MEMORY THERE, GAIVS,
* Unfortunate cleanup reduced the pRNG's seed to be just the
process |ID \ AM, RIGHT. LET ME FIX THAT.

/

So the pRNG would only start at one of ~30,000 starting points

- This made it easy to find private keys

* Simply set to each possible starting point and generate a few private
keys

* See if you then find the corresponding public keys anywhere on the
Internet

|

hitp://blog.dieweltistgarnichtso.net/Caprica,-2-years-ago -

And Now Lets
Add Some RNG Sabotage...

Computer Science 161 Fall 2019

- The Dual_EC_DRBG
* A pPRNG pushed by the NSA behind the scenes based on Elliptic Curves

- |t relies on two parameters, P and Q on an elliptic curve

* The person who generates P and selects Q=eP can predict the random number
generator, regardless of the internal state

|t also sucked!

* |t was horribly slow and even had subtle biases that shouldn't exist in a pRNG:
You could distinguish the upper bits from random!

- Now this was spotted fairly early on...
 Why should anyone use such a horrible random number generator?

33

Well, anyone not paid that Is...

Computer Science 161 Fall 2019

- RSA Data Security accepted 30-pieces-ofsHver
$10M from the NSA to implement Dual_EC in their

RSA BSAFE library
* And silently make it the default pRNG

- Using RSA's support, it became a NIST standard

* And inserted into other products...

« And then the Snhowden revelations

* The initial discussion of this sabotage in the
NY Times just vaguely referred to a Crypto
talk given by Microsoft people...

That everybody quickly realized referred to Dual_EC

But this Is insanely powerful...

Computer Science 161 Fall 2019 Weaver

- |t isn't just forward prediction but being able to run the generator backwards!

* Which is why Dual_EC is so nasty:
Even if you know the internal state of HMAC_DRBG it has rollback resistance!

« In TLS (HTTPS) and Virtual Private Networks you have a motif of:

* (Generate a random session key

* (Generate some other random data that's
public visible
EG, the IV in the encrypted channel, or the "random”
nonce in TLS

Oh, and an NSA sponsored "standard" to spit out even more
"random” bits!

\'

- |f you can run the random number ="
generator backwards, you can find the
session key

F-Il!!
, ~.wh

g ey
et ,35.
g ‘e] 4
, ?\,E y

" f"‘@ ..l \
* \THISIS CRYPTOIIT

imgfiip.com “

It Got Worse:
Sabotaging Juniper

Computer Science 161 Fall 2019

- Juniper also used Dual_EC in their Virtual Private Networks
» "But we did it safely, we used a different Q"

- Sometime later, someone else noticed this...

* "Hmm, P and Q are the keys to the backdoor...
Lets just hack Juniper and rekey the lock!"

And whoever put in the first Dual_EC then went "Oh crap, we got locked out but we can't do anything about it!"

- Sometime later, someone else goes...
 "Hey, lets add an ssh backdoor®

- Sometime later, Juniper goes

 "Whoops, someone added an ssh backdoor, lets see
what else got F'ed with, oh, this # in the pRNG"

- And then everyone else went

 "Ohh, patch for a backdoor. Lets see what got fixed.
Oh, these look like Dual_EC parameters..."

imgfiip.com

Sabotaging "Magic Numbers”
In General

Computer Science 161 Fall 2019 Weaver

- Many cryptographic implementations depend on "magic”’ numbers
 Parameters of an Elliptic curve

« Magic points like P and Q
* Particular prime p for Diffie/Hellman
* The content of S-boxes in block cyphers

- Good systems should cleanly

describe how they are generated

* |n some sound manner (e.g. AES's S-boxes)

* |n some "random" manner defined by a pRNG with a specific seed

Eg, seeded with "Nicholas Weaver Deserves Perfect Student Reviews”...
Needs to be very low entropy so the designer can't try a gazillion seeds

37

Because Otherwise You
Have Trouble...

Computer Science 161 Fall 2019

* Not only Dual-EC's P and Q

- Recent work: 1024b Diffie/Hellman moderately impractical...

* But you can create a sabotaged prime that is 1/1,000,000 the work to crack!
And the most often used "example"” p's origin is lost in time!

» It can cast doubt even when a design is solid.

 The DES standard was developed by IBM but with input from the NSA

Everyone was suspicious about the NSA tampering with the S-boxes...

They did: The NSA made them stronger against
an attack they knew but the public didn't

 The NSA-defined elliptic curves P-256 and P-384

| trust them because they are in CNSA so the

NSA uses them for TS communication:

A backdoor here would be absolutely unacceptable...

but only because I actually believe the NSA wouldn't go
and try to shoot itself in the head!

0

/8 N}E

\rms |s1=nm0! =N

imgfiip.com

So What To Use?

Computer Science 161 Fall 2019

- AES-128-CFB or AES-256-CFB:

* Robust to screwups encryption

* Alternately, AES-128-GCM (Galios Counter Mode):
An AEAD mode, but is NOT resistant to screwups

« SHA-2 or SHA-3 family (256b, 384b, or 512b):
* Robust cryptographic hashes, SHA-1 and MD5 are broken

* HMAC-SHA256 or HMAC-SHAG:

* Different function than the encryption:
Prevents screwups on using the same key & is a hash if not using an AEAD mode

* Always Encrypt Then MAC!

- HMAC-SHA256-DRBG or HMAC-SHAS-DRBG:

 The best pRNG available

e Seed using both the processor random number generator AND other entropy sources!

Don't use the processor RNG bare when building a software cryptosystem:
Those are potentially sabotage able and use designs without rollback resistance.

39

Public Key...

Computer Science 161 Fall 2019

- All our previous primitives required a "miracle":
 We somehow have to have Alice and Bob get a shared k.

- Enter Public Key cryptography: the miracle of modern cryptography
 How starting Friday, but what today

» Three primitives:
* Public Key Agreement

* Public Key Encryption
* Public Key Signatures

- Based on some families of magic math...
* For us, we will use some group-theory based primitives

40

Public Key Agreement

Computer Science 161 Fall 2019

« Alice and Bob have a channel...

* There may be an eavesdropper but not a manipulator

- The goal: Alice & Bob agree on a random value
* This will be k for all subsegquent communication

- When done, the key Is thrown away

* Designed to prevent an attacker who later recovers Alice or Bob's long lived
secrets from finding k.

4]

Public Key Encryption

Computer Science 161 Fall 2019

- Alice has two keys:
* Kpub: Her public key, anyone can know

* Kopriv: Her private key, a deep dark secret

- Anyone has access to Alice's public key

* For anyone to send a message to Alice:

» (Create a random session key k
Used to encrypt the rest of the message

* Encrypt k using Alice's Kpus.
- Only Alice can decrypt the message

* The decryption function only works with Kpriy!

42

Public Key Signatures

Computer Science 161 Fall 2019

- Once again, Alice has two keys:
* Kbpub: Her public key, anyone can know

* Kopriv: Her private key, a deep dark secret

* She can sigh a message

* (Calculate H(M)
* S(Kprivy, HM)): Sign H(M) with Kpriv.

- Anyone can now verify

* Recalculate H(M)
* V(Kpub, S(Kpriv, H(M), H(M)): Verity that the signature was created with Kpriv

43

Things To Remember...

Computer Science 161 Fall 2019

* Public key Is slow!
* Orders of magnitude slower than symmetric key

- Public key Is based on delicate magic math

* Discrete log in a group Is the most common
« RSA
 Some new "post-quantum” magic...

» Some systems in particular are easy to get wrong
* We will get to some of the epic crypto-fails later

44

Our Roadmap For Public Key...

Computer Science 161 Fall 2019

» Public Key:

 Something everyone can know

* Private Key:

* The secret belonging to a specific person

- Diffie/Hellman:

* Provides key exchange with no pre-shared secret

- ElGamal & RSA:

* Provide a message to a recipient only knowing the recipient's public key

- DSA & RSA signatures:

* Provide a message that anyone can prove was generated with a private key
45

Diffie-Hellman Key Exchange

Computer Science 161 Fall 2019 Nicholas Weaver

- What If iInstead they can somehow generate a random key when
needed?

» Seems impossible in the presence of Eve observing all of their
communication ...
 How can they exchange a key without her learning it?

- But: actually Is possible using public-key technology
* Requires that Alice & Bob know that their messages will reach one another without any
meddling
 Protocol: Diffie-Hellman Key Exchange (DHE)

 The E is "Ephemeral”, we use this to create a temporary key for other uses and then

forget about it
46

Diffie-Hellman Key Exchange

47

DHE

Computer Science 161 Fall 2019 Nicholas Weaver

Alice Bob

48

DHE

Computer Science 161 Fall 2019 Nicholas Weaver

Alice Bob

A =g2mod p
g°Pmodp=B

49

DHE

Computer Science 161 Fall 2019 Nicholas Weaver

Alice Bob

A =g2mod p
modp =B

50

DHE

Computer Science 161 Fall 2019

51

This is Ephemeral Diffie/Hellman

Computer Science 161 Fall 2019

- K =92 mod p is used as the basis for a "session key"

* A symmetric key used to protect subsequent communication between Alice
and Bob

In general, public key operations are vastly more expensive than symmetric key, so it
IS mostly used just to agree on secret keys, transmit secret keys, or sign hashes

 |f either a or b is random, K is random

- When Alice and Bob are done, they discard K, a, b

* This provides forward secrecy:. Alice and Bob don't retain any information
that a later attacker who can compromise Alice or Bob's secrets could use to
decrypt the messages exchanged with K.

52

Diffie Hellman is part of more generic problem

Computer Science 161 Fall 2019 Nicholas Weaver

- This involved deep mathematical voodoo called "Group Theory"
* |ts actually done under a group G

- Two main groups of note:

* Numbers mod p with generator g

* Point addition in an elliptic curve C

Usually identified by number, eg. p256, p384 (NSA-developed curves) or
Curve25519 (developed by Dan Bernstein, also 256b long)

- So EC (Elliptic Curve) == different group

* Thought to be harder so fewer bits: 384b ECDHE ?= 3096b DHE
* But otherwise, its "add EC to the name" for something built on discrete log

53

