
Computer Science 161 Fall 2020 Weaver

 
Crypto 3

 1

Computer Science 161 Fall 2020 Weaver

Administrivia!

• Project 1 due Friday the 25th

• Homework 2 due Monday the 28th

• Reminder:

• Zoom chat for conversation

• Zoom Q&A for Questions & Answers

 2

Computer Science 161 Fall 2020 Weaver

Message Authentication Codes (MACs)

• Symmetric-key approach for integrity

• Uses a shared (secret) key K

• Goal: when Bob receives a message, can confidently determine it hasn’t
been altered

• In addition, whomever sent it must have possessed K 

	 (⇒ message authentication, sorta...)

• Conceptual approach:

• Alice sends {M, T} to Bob, with tag T = MAC(K, M)

• Note, M could instead be C = EK'(M), but not required

• When Bob receives {M', T'}, Bob checks whether T' = MAC(K, M')

• If so, Bob concludes message untampered, came from Alice

• If not, Bob discards message as tampered/corrupted

 3

Computer Science 161 Fall 2020 Weaver

Requirements for Secure MAC Functions

• Suppose MITM attacker Mallory intercepts Alice’s {M, T} transmission …

• … and wants to replace M with altered M*
• … but doesn’t know shared secret key K

• We have secure integrity if MAC function 
T = MAC(M, K) has two properties:

• Mallory can’t compute T* = MAC(M*, K)

• Otherwise, could send Bob {M*, T*} and fool him

• Mallory can’t find M** such that MAC(M**, K) = T

• Otherwise, could send Bob {M**, T} and fool him

• These need to hold even if Mallory can observe many {Mi, Ti} pairs,
including for Mi’s she chose

 4

Computer Science 161 Fall 2020 Weaver

MAC then Encrypt or  
Encrypt then MAC
• You should never use the same key for the MAC and the Encryption

• Some MACs will break completely if you reuse the key

• Even if it is probably safe (eg, AES for encryption, HMAC for MAC) its still a bad idea

• MAC then Encrypt:

• Compute T = MAC(M,Kmac), send C = E(M||T,Kencrypt)

• Encrypt then MAC:

• Compute C = E(M,Kencrypt), T = MAC(M,Kmac),  

send C||T

• Theoretically they are the same, but...

• Once again, its time for ...

 5

Computer Science 161 Fall 2020 Weaver

HTTPS Authentication in 
Practice
• When you log into a web site, it sets a "cookie" in your browser

• All subsequent requests include this cookie so the web server knows who you are

• If an attacker can get your cookie...

• They can impersonate you on the "Secure" site

• And the attacker can create multiple  
tries

• On a WiFi network, inject a bit of JavaScript 

that repeatedly connects to the site

• While as a man-in-the-middle to manipulate  

connections

 6

Computer Science 161 Fall 2020 Weaver

The TLS 1.0 "Lucky13" Attack: 
"F-U, This is Cryptography"
• HTTPS/TLS uses MAC then Encrypt

• With CBC encryption

• The Lucky13 attack changes the cipher text in an attempt to discover the
state of a byte

• But can't predict the MAC

• The TLS connection retries after each failure so the attacker can try multiple times

• Goal is to determine the status each byte in the authentication cookie which is in a known position

• It detects the timing of the error response

• Which is different if the guess is right or wrong

• Even though the underlying algorithm was "proved" secure!

• So always do Encrypt then MAC since,  
once again, it is more mistake tolerant

 7

Computer Science 161 Fall 2020 Weaver

The best MAC construction: 
HMAC
• Idea is to turn a hash function into a MAC

• Since hash functions are often much  

faster than encryption

• While still maintaining the properties of  

being a cryptographic hash

• Reduce/expand the key to a  
single hash block

• XOR the key with the i_pad

• 0x363636... (one hash block long)

• Hash ((K ⊕ i_pad) || message)

• XOR the key with the o_pad

• 0x5c5c5c...

• Hash ((K ⊕ o_pad) || first hash)
 8

function hmac (key, message) {
 if (length(key) > blocksize) {
 key = hash(key)
 }
 while (length(key) < blocksize) {
 key = key || 0x00
 }
 o_key_pad = 0x5c5c... ⊕ key
 i_key_pad = 0x3636... ⊕ key
 return hash(o_key_pad ||
 hash(i_key_pad || message))
}

Computer Science 161 Fall 2020 Weaver

Why This Structure?

• i_pad and o_pad are slightly arbitrary

• But it is necessary for security for the two values

to be different

• So for paranoia chose very different bit patterns

• Second hash prevents appending data

• Otherwise attacker could add more to the

message and the HMAC and it would still be a
valid HMAC for the key

• Wouldn't be a problem with the key at the end but at
the start makes it easier to capture intermediate
HMACs

• Is a Pseudo Random Function if the
underlying hash is a PRF

• AKA if you can break this, you can break the hash!

 9

function hmac (key, message) {
 if (length(key) > blocksize) {
 key = hash(key)
 }
 while (length(key) < blocksize) {
 key = key || 0x00
 }
 o_key_pad = 0x5c5c... ⊕ key
 i_key_pad = 0x3636... ⊕ key
 return hash(o_key_pad ||
 hash(i_key_pad || message))
}

Computer Science 161 Fall 2020 Weaver

Great Properties of HMAC...

• It is still a hash function!

• So all the good things of a cryptographic hash: 

An attacker or even the recipient shouldn't be able to calculate M given
HMAC(M,K)

• An attacker who doesn't know K can't even verify if HMAC(M,K) == M

• Very different from the hash alone, and potentially very useful: 

Attacker can't even brute force try to find M based on HMAC(M,K)!

• Its probably safe if you screw up and use the same key for
both MAC and Encrypt

• Since it is a different algorithm than the encryption function...

• But you shouldn't do this anyway!

 10

Computer Science 161 Fall 2020 Weaver

Considerations when using MACs

• Along with messages, can use for data at rest

• E.g. laptop left in hotel, providing you don’t store the key on the laptop

• Can build an efficient data structure for this that doesn’t require re-MAC’ing over entire disk

image when just a few files change

• MACs in general provide no promise not to leak info about message

• Compute MAC on ciphertext if this matters

• Or just use HMAC, which does promise not to leak info if the  

underlying hash function doesn't

• NEVER use the same key for MAC and  
Encryption...

• Known "FU-this-is-crypto" scenarios reusing an  

encryption key for MAC in some algorithms when its the  
same underlying block cipher for both

 11

Computer Science 161 Fall 2020 Weaver

Plus AEAD Encryption Modes...

• The latest block cipher modes are "AEAD":

• Authenticated Encryption with Additional Data

• Provides both integrity and confidentiality over the data

• With integrity also provided for the "Additional Data"

• Used right, these are great

• Assuming you use a library...

• Used wrong...

• The AEAD modes are built for "performance", which means parallelization,

which means CTR mode, which means IV reuse is a disaster!
 12

Computer Science 161 Fall 2019 Weaver

A Lot Of Uses for 
Random Numbers...
• The key foundation for all modern cryptographic systems is

often not encryption but these "random" numbers!

• So many times you need to get something random:

• A random cryptographic key

• A random initialization vector

• A "nonce" (use-once item)

• A unique identifier

• Stream Ciphers

• If an attacker can predict a random number things can
catastrophically fail

 13

Computer Science 161 Fall 2019 Weaver

Breaking Slot Machines

• Some casinos experienced unusual bad "luck"

• The suspicious players would wait and then all of a sudden

try to play

• The slot machines have predictable pRNG

• Which was based on the current time & a seed

• So play a little...

• With a cellphone watching

• And now you know when to press "spin" to be more likely

to win

• Oh, and this never effected Vegas!

• Evaluation standards for Nevada slot machines

specifically designed to address this sort of issue
 14

Computer Science 161 Fall 2019 Weaver

Breaking Bitcoin Wallets

• blockchain.info supports "web wallets"

• Javascript that protects your Bitcoin

• The private key for Bitcoin needs to be
random

• Because otherwise an attacker can spend the

money

• An "Improvment" [sic] to the RNG
reduced the entropy (the actual
randomness)

• Any wallet created with this improvment was brute-

forceable and could be stolen
 15

Computer Science 161 Fall 2019 Weaver

TRUE Random Numbers

• True random numbers generally require a physical process

• Common circuit is an unusable ring oscillator built into the CPU

• It is then sampled at a low rate to generate true random bits which are then fed into a pRNG on the

CPU

• Other common sources are human  
activity measured at very fine time scales

• Keystroke timing, mouse movements, etc

• "Wiggle the mouse to generate entropy for a key"

• Network/disk activity which is often human driven

• More exotic ones are possible:

• Cloudflare has a wall of lava lamps that are recorded 

by a HD video camera which views the lamps through a  
rotating prism: It is just one source of the randomness

 16

Computer Science 161 Fall 2019 Weaver

Combining Entropy

• Many physical entropy sources are biased

• Some have significant biases: e.g. a coin that flips "heads" 90% of the time!

• Some aren't very good: e.g. keystroke timing at a microsecond granularity

• The general procedure is to combine various sources of entropy

• The goal is to be able to take multiple crappy sources of entropy

• Measured in how many bits: 

A single flip of a fair coin is 1 bit of entropy

• And combine into a value where the entropy is the minimum of the sum of all

entropy sources (maxed out by the # of bits in the hash function itself)

• N-1 bad sources and 1 good source -> good pRNG state

 17

Computer Science 161 Fall 2019 Weaver

Pseudo Random Number Generators 
(aka Deterministic Random Bit Generators)
• Unfortunately one needs a lot of random numbers in cryptography

• More than one can generally get by just using the physical entropy source

• Enter the pRNG or DRBG

• If one knows the state it is entirely predictable

• If one doesn't know the state it should be indistinguishable from a random string

• Three operations

• Instantiate: (aka Seed) Set the internal state based on the real entropy sources

• Reseed: Update the internal state based on both the previous state and additional entropy

• The big different from a simple stream cipher

• Generate: Generate a series of random bits based on the internal state

• Generate can also optionally add in additional entropy

• instantiate(entropy)  
reseed(entropy) 
generate(bits, {optional entropy})

 18

Computer Science 161 Fall 2019 Weaver

Properties for the pRNG

• Can a pRNG be truly random?

• No. For seed length s, it can only generate at most 2s distinct possible

sequences.

• A cryptographically strong pRNG “looks” truly random to
an attacker

• Attacker cannot distinguish it from a random sequence: 
If the attacker can tell a sufficiently long bitstream was generated by the
pRNG instead of a truly random source it isn't a good pRNG

 19

Computer Science 161 Fall 2019 Weaver

Prediction and Rollback Resistance

• A pRNG should be predictable only if you know the internal state

• It is this predictability which is why its called "pseudo"

• If the attacker does not know the internal state

• The attacker should not be able to distinguish a truly random string from one generated by

the pRNG

• It should also be rollback-resistant

• Even if the attacker finds out the state at time T, they should not be able to determine what

the state was at T-1

• More precisely, if presented with two random strings, one truly random and one generated

by the pRNG at time T-1, the attacker should not be able to distinguish between the two

• Rollback resistance isn't specifically required in a pRNG... 

But it should be
 20

Computer Science 161 Fall 2019 Weaver

Why "Rollback Resistance" is Essential

• Assume attacker, at time T, is able to obtain all the internal state of
the pRNG

• How? E.g. the pRNG screwed up and instead of an IV, released the internal state, or

the pRNG is bad...

• Attacker observes how the pRNG was used

• T-1 = Random Session key 

T0 = Nonce/IV

• Now if the pRNG doesn't resist 
rollback, and the attacker gets the  
state at T0, attacker can know the  
session key! And we are back to...

 21

Computer Science 161 Fall 2019 Weaver

More on Seeding and Reseeding

• Seeding should take all the different physical entropy
sources available

• If one source has 0 entropy, it must not reduce the entropy of the seed

• We can shove a whole bunch of low-entropy sources together and create a

high-entropy seed

• Reseeding adds in even more entropy

• F(internal_state, new material)
• Again, even if reseeding with 0 entropy, it must not reduce the entropy of the

seed

 22

Computer Science 161 Fall 2019 Weaver

Probably the best pRNG/DRBG: 
HMAC_DRBG
• Generally believed to be the best

• Accept no substitutes!

• Two internal state registers, V and K

• Each the same size as the hash function's output

• V is used as (part of) the data input into HMAC, while K is the key

• If you can break this pRNG you can either break the underlying

hash function or break a significant assumption about how
HMAC works

• Yes, security proofs sometimes are a very good thing and actually do work

• So as long as the security proof for HMAC is correct, the security proof for HMAC_DRBG

is correct!
 23

Computer Science 161 Fall 2019 Weaver

HMAC_DRBG 
Generate
• The basic generation function

• Remarks:

• It requires one HMAC call per blocksize-bits of state

• Then two more HMAC calls to update the internal

state

• Prediction resistance:

• If you can distinguish new K from random when you

don't know old K: 
You've distinguished HMAC from a random function! 
Which means you've either broken the hash or the
HMAC construction

• Rollback resistance:

• If you can learn old K from new K and V: 

You've reversed the hash function!
 24

function hmac_drbg_generate (state, n) {
 tmp = ""
 while(len(tmp) < N){
 state.v = hmac(state.k,state.v)
 tmp = tmp || state.v
 }
 // Update state with no input
 state.k = hmac(state.k, state.v || 0x00)
 state.v = hmac(state.k, state.v)
 // Return the first N bits of tmp
 return tmp[0:N]
}

Computer Science 161 Fall 2019 Weaver

HMAC_DRBG 
Update
• Used instead of the "no-input update"

when you have additional entropy on
the generate call

• Used standalone for both instantiate
(state.k = state.v = 0) and reseed
(keep state.k and state.v)

• Designed so that even if the attacker
controls the input but doesn't know k: 
The attacker should not be able to
predict the new k

 25

function hmac_drbg_update (state, input) {
 state.k = hmac(state.k, state.v || 0x00
 || input)
 state.v = hmac(state.k, state.v)
 state.k = hmac(state.k, state.v || 0x01
 || input)
 state.v = hmac(state.k, state.v)
}

Computer Science 161 Fall 2019 Weaver

Generating true random numbers

• Modern CPUs have true random number generators

• Sample a noisy circuit at a low rate or similar tricks

• These sources are biased...

• They are also slow

• So use this as an entropy source to feed a pRNG on the chip

• Now you can get random numbers quickly

• Very fast

• Vulnerable to tampering!

• You can't actually test that the pRNG circuit is 100% correct without adding paths that

could potentially sabotage the pRNG circuit

• Sabotage that can reduce effective entropy to 32b are possible

 26

Computer Science 161 Fall 2019 Weaver

Stream ciphers

• Block cipher: fixed-size, stateless, requires “modes” to
securely process longer messages

• Stream cipher: keeps state from processing past message
elements, can continually process new elements

• Common approach: “one-time pad on the cheap”:

• XORs the plaintext with some “random” bits

• But: random bits ≠ the key (as in one-time pad)

• Instead: output from cryptographically strong pseudorandom number generator

(pRNG)

• Anyone who actually calls this a "One Time Pad" is selling snake oil!

 27

Computer Science 161 Fall 2019 Weaver

Building Stream Ciphers

• Encryption, given key K and message M:

• Choose a random value IV

• E(M, K) = pRNG(K, IV) ⊕ M

• Decryption, given key K, ciphertext C, and initialization vector IV:

• D(C, K) = PRNG(K, IV) ⊕ C

• Can encrypt message of any length 
because pRNG can produce any  
number of random bits...

• But in practice, for an n-bit seed pRNG,  

stop at 2n/2. Because, of course...
 28

Computer Science 161 Fall 2019 Weaver

Using a pRNG to Build 
A Stream Cipher

Mi: ith message
of plaintext

 29

Mi

(Small) K, IV

PRNG

Keystream

⨁

(Small) K, IV

PRNG

Keystream

⨁
Ci

Alice Bob

Computer Science 161 Fall 2019 Weaver

CTR mode is (mostly) a stream cipher

• E(ctr,K) should look like a series of pseudo random
numbers...

• But after a large amount it is slightly distinguishable!

• Since it is actually a pseudo-random permutation...

• For a cipher using 128b blocks, you will never get the same 128b number until

you go all the way through the 2128 possible entries on the counter

• Reason why you want to stop after 264

• If you use CTR mode in the first place

• Also very minor information leakage:

• If Ci = Cj, for i != j, it follows that Mi != Mj

 30

Computer Science 161 Fall 2019 Weaver

UUID: Universally Unique Identifiers

• You got to have a "name" for something...

• EG, to store a location in a filesystem

• Your name must be unique...

• And your name must be unpredictable!

• Just chose a random value!

• UUID: just chose a 128b random value

• Well, it ends up being a 122b random value with some signaling information

• A good UUID library uses a cryptographically-secure pRNG that is properly seeded

• Often written out in hex as:

• 00112233-4455-6677-8899-aabbccddeeff

 31

Computer Science 161 Fall 2019 Weaver

What Happens When The Random Numbers 
Goes Wrong...
• Insufficient Entropy:

• Random number generator is seeded without enough entropy

• Debian OpenSSL CVE-2008-0166

• In "cleaning up" OpenSSL (Debian 'bug' #363516), the author 'fixed'

how OpenSSL seeds random numbers

• Because the code, as written, caused Purify and Valgrind to complain about

reading uninitialized memory

• Unfortunate cleanup reduced the pRNG's seed to be just the

process ID

• So the pRNG would only start at one of ~30,000 starting points

• This made it easy to find private keys

• Simply set to each possible starting point and generate a few private

keys

• See if you then find the corresponding public keys anywhere on the

Internet
 32

http://blog.dieweltistgarnichtso.net/Caprica,-2-years-ago

Computer Science 161 Fall 2019 Weaver

And Now Lets 
Add Some RNG Sabotage...
• The Dual_EC_DRBG

• A pRNG pushed by the NSA behind the scenes based on Elliptic Curves

• It relies on two parameters, P and Q on an elliptic curve

• The person who generates P and selects Q=eP can predict the random number

generator, regardless of the internal state

• It also sucked!

• It was horribly slow and even had subtle biases that shouldn't exist in a pRNG: 

You could distinguish the upper bits from random!

• Now this was spotted fairly early on...

• Why should anyone use such a horrible random number generator?

 33

Computer Science 161 Fall 2019 Weaver

Well, anyone not paid that is...

• RSA Data Security accepted 30 pieces of silver  
$10M from the NSA to implement Dual_EC in their  
RSA BSAFE library

• And silently make it the default pRNG

• Using RSA's support, it became a NIST standard

• And inserted into other products...

• And then the Snowden revelations

• The initial discussion of this sabotage in the  

NY Times just vaguely referred to a Crypto  
talk given by Microsoft people...

• That everybody quickly realized referred to Dual_EC
 34

Computer Science 161 Fall 2019 Weaver

But this is insanely powerful...

• It isn't just forward prediction but being able to run the generator backwards!

• Which is why Dual_EC is so nasty:  

Even if you know the internal state of HMAC_DRBG it has rollback resistance!

• In TLS (HTTPS) and Virtual Private Networks you have a motif of:

• Generate a random session key

• Generate some other random data that's  

public visible

• EG, the IV in the encrypted channel, or the "random"  

nonce in TLS

• Oh, and an NSA sponsored "standard" to spit out even more 

"random" bits!

• If you can run the random number 
generator backwards, you can find the  
session key

 35

Computer Science 161 Fall 2019 Weaver

It Got Worse: 
Sabotaging Juniper
• Juniper also used Dual_EC in their Virtual Private Networks

• "But we did it safely, we used a different Q"

• Sometime later, someone else noticed this...

• "Hmm, P and Q are the keys to the backdoor... 

Lets just hack Juniper and rekey the lock!"

• And whoever put in the first Dual_EC then went "Oh crap, we got locked out but we can't do anything about it!"

• Sometime later, someone else goes...

• "Hey, lets add an ssh backdoor"

• Sometime later, Juniper goes

• "Whoops, someone added an ssh backdoor, lets see  

what else got F'ed with, oh, this # in the pRNG"

• And then everyone else went

• "Ohh, patch for a backdoor. Lets see what got fixed.  

Oh, these look like Dual_EC parameters..."
 36

Computer Science 161 Fall 2019 Weaver

Sabotaging "Magic Numbers" 
In General
• Many cryptographic implementations depend on "magic" numbers

• Parameters of an Elliptic curve

• Magic points like P and Q

• Particular prime p for Diffie/Hellman

• The content of S-boxes in block cyphers

• Good systems should cleanly  
describe how they are generated

• In some sound manner (e.g. AES's S-boxes)

• In some "random" manner defined by a pRNG with a specific seed

• Eg, seeded with "Nicholas Weaver Deserves Perfect Student Reviews"... 

Needs to be very low entropy so the designer can't try a gazillion seeds
 37

Computer Science 161 Fall 2019 Weaver

Because Otherwise You 
Have Trouble...
• Not only Dual-EC's P and Q

• Recent work: 1024b Diffie/Hellman moderately impractical...

• But you can create a sabotaged prime that is 1/1,000,000 the work to crack! 

And the most often used "example" p's origin is lost in time!

• It can cast doubt even when a design is solid:

• The DES standard was developed by IBM but with input from the NSA

• Everyone was suspicious about the NSA tampering with the S-boxes...

• They did: The NSA made them stronger against 

an attack they knew but the public didn't

• The NSA-defined elliptic curves P-256 and P-384

• I trust them because they are in CNSA so the  

NSA uses them for TS communication: 
A backdoor here would be absolutely unacceptable... 
but only because I actually believe the NSA wouldn't go 
and try to shoot itself in the head!

 38

Computer Science 161 Fall 2019 Weaver

So What To Use?

• AES-128-CFB or AES-256-CFB:

• Robust to screwups encryption

• Alternately, AES-128-GCM (Galios Counter Mode): 

An AEAD mode, but is NOT resistant to screwups

• SHA-2 or SHA-3 family (256b, 384b, or 512b):

• Robust cryptographic hashes, SHA-1 and MD5 are broken

• HMAC-SHA256 or HMAC-SHA3:

• Different function than the encryption: 

Prevents screwups on using the same key & is a hash if not using an AEAD mode

• Always Encrypt Then MAC!

• HMAC-SHA256-DRBG or HMAC-SHA3-DRBG:

• The best pRNG available

• Seed using both the processor random number generator AND other entropy sources!

• Don't use the processor RNG bare when building a software cryptosystem: 
Those are potentially sabotage able and use designs without rollback resistance.

 39

Computer Science 161 Fall 2019 Weaver

Public Key...

• All our previous primitives required a "miracle":

• We somehow have to have Alice and Bob get a shared k.

• Enter Public Key cryptography: the miracle of modern cryptography

• How starting Friday, but what today

• Three primitives:

• Public Key Agreement

• Public Key Encryption

• Public Key Signatures

• Based on some families of magic math...

• For us, we will use some group-theory based primitives

 40

Computer Science 161 Fall 2019 Weaver

Public Key Agreement

• Alice and Bob have a channel...

• There may be an eavesdropper but not a manipulator

• The goal: Alice & Bob agree on a random value

• This will be k for all subsequent communication

• When done, the key is thrown away

• Designed to prevent an attacker who later recovers Alice or Bob's long lived

secrets from finding k.

 41

Computer Science 161 Fall 2019 Weaver

Public Key Encryption

• Alice has two keys:

• Kpub: Her public key, anyone can know

• Kpriv: Her private key, a deep dark secret

• Anyone has access to Alice's public key

• For anyone to send a message to Alice:

• Create a random session key k

• Used to encrypt the rest of the message

• Encrypt k using Alice's Kpub.

• Only Alice can decrypt the message

• The decryption function only works with Kpriv!

 42

Computer Science 161 Fall 2019 Weaver

Public Key Signatures

• Once again, Alice has two keys:

• Kpub: Her public key, anyone can know

• Kpriv: Her private key, a deep dark secret

• She can sign a message

• Calculate H(M)

• S(Kpriv, H(M)): Sign H(M) with Kpriv.

• Anyone can now verify

• Recalculate H(M)

• V(Kpub, S(Kpriv, H(M), H(M)): Verify that the signature was created with Kpriv

 43

Computer Science 161 Fall 2019 Weaver

Things To Remember...

• Public key is slow!

• Orders of magnitude slower than symmetric key

• Public key is based on delicate magic math

• Discrete log in a group is the most common

• RSA

• Some new "post-quantum" magic...

• Some systems in particular are easy to get wrong

• We will get to some of the epic crypto-fails later

 44

Computer Science 161 Fall 2019 Nicholas Weaver

Our Roadmap For Public Key...

• Public Key:

• Something everyone can know

• Private Key:

• The secret belonging to a specific person

• Diffie/Hellman:

• Provides key exchange with no pre-shared secret

• ElGamal & RSA:

• Provide a message to a recipient only knowing the recipient's public key

• DSA & RSA signatures:

• Provide a message that anyone can prove was generated with a private key

 45

Computer Science 161 Fall 2019 Nicholas Weaver

Diffie-Hellman Key Exchange

• What if instead they can somehow generate a random key when
needed?

• Seems impossible in the presence of Eve observing all of their
communication …

• How can they exchange a key without her learning it?

• But: actually is possible using public-key technology

• Requires that Alice & Bob know that their messages will reach one another without any

meddling

• Protocol: Diffie-Hellman Key Exchange (DHE)

• The E is "Ephemeral", we use this to create a temporary key for other uses and then

forget about it
 46

Computer Science 161 Fall 2019 Nicholas Weaver

Diffie-Hellman Key Exchange

 47

Alice Bob

Eve

1.Everyone agrees in advance on a
well-known (large) prime p and a
corresponding g: 1 < g < p-1

p, g

p, g

p, g

Computer Science 161 Fall 2019 Nicholas Weaver

DHE

 48

Alice Bob

Eve

2.Alice picks random secret ‘a’: 1 < a < p-1 

3.Bob picks random secret ‘b’: 1 < b < p-1

p, g

p, g

p, g

a b

a? b?

Computer Science 161 Fall 2019 Nicholas Weaver

DHE

 49

Alice Bob

Eve

4. Alice sends A = ga mod p to Bob

5. Bob sends B = gb mod p to Alice 

 
Eve sees these

p, g

p, g

p, g

a b

a? b?

A = ga mod pA

A

gb mod p = BB

B

Computer Science 161 Fall 2019 Nicholas Weaver

DHE

 50

Alice Bob

Eve

6. Alice knows {a, A, B}, computes  
K = Ba mod p = (gb)a = gba mod p

7. Bob knows {b, A, B}, computes  
K = Ab mod p = (ga)b = gab mod p

8. K is now the shared secret key.

p, g

p, g

p, g

a b

a? b?

A = ga mod pA

A

gb mod p = BB

B

A
B

K K

Computer Science 161 Fall 2019 Nicholas Weaver

DHE

 51

Alice Bob

Evep, g

p, g

p, g

a b

a? b?
A
B

K K

While Eve knows {p, g, ga mod p, gb mod p}, believed to be
computationally infeasible for her to then deduce K = gab mod p.
She can easily construct A∙B = ga∙gb mod p = ga+b mod p.  
But computing gab requires ability to take discrete logarithms mod p. 
Discrete log over the group defined by p and g presumed to be hard

Computer Science 161 Fall 2019 Nicholas Weaver

This is Ephemeral Diffie/Hellman

• K = gab mod p is used as the basis for a "session key"

• A symmetric key used to protect subsequent communication between Alice

and Bob

• In general, public key operations are vastly more expensive than symmetric key, so it

is mostly used just to agree on secret keys, transmit secret keys, or sign hashes

• If either a or b is random, K is random

• When Alice and Bob are done, they discard K, a, b

• This provides forward secrecy: Alice and Bob don't retain any information

that a later attacker who can compromise Alice or Bob's secrets could use to
decrypt the messages exchanged with K.

 52

Computer Science 161 Fall 2019 Nicholas Weaver

Diffie Hellman is part of more generic problem

• This involved deep mathematical voodoo called "Group Theory"

• Its actually done under a group G

• Two main groups of note:

• Numbers mod p with generator g

• Point addition in an elliptic curve C

• Usually identified by number, eg. p256, p384 (NSA-developed curves) or  

Curve25519 (developed by Dan Bernstein, also 256b long)

• So EC (Elliptic Curve) == different group

• Thought to be harder so fewer bits: 384b ECDHE ?= 3096b DHE

• But otherwise, its "add EC to the name" for something built on discrete log

 53

