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Administrivia!

• Project 1 due Friday the 25th

• Homework 2 due Monday the 28th

• Reminder:

• Zoom chat for conversation

• Zoom Q&A for Questions & Answers

 2



Computer Science 161 Fall 2020 Weaver

Message Authentication Codes (MACs)

• Symmetric-key approach for integrity

• Uses a shared (secret) key K 


• Goal: when Bob receives a message, can confidently determine it hasn’t 
been altered

• In addition, whomever sent it must have possessed K 

	 (⇒ message authentication, sorta...)


• Conceptual approach:

• Alice sends {M, T} to Bob, with tag T = MAC(K, M)

• Note, M could instead be C = EK'(M), but not required


• When Bob receives {M', T'}, Bob checks whether T' = MAC(K, M')

• If so, Bob concludes message untampered, came from Alice

• If not, Bob discards message as tampered/corrupted
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Requirements for Secure MAC Functions

• Suppose MITM attacker Mallory intercepts Alice’s {M, T} transmission …

• … and wants to replace M with altered M* 
• … but doesn’t know shared secret key K


• We have secure integrity if MAC function 
T = MAC(M, K) has two properties:

• Mallory can’t compute T* = MAC(M*, K)

• Otherwise, could send Bob {M*, T*} and fool him


• Mallory can’t find M** such that MAC(M**, K) = T

• Otherwise, could send Bob {M**, T} and fool him


• These need to hold even if Mallory can observe many {Mi, Ti} pairs, 
including for Mi’s she chose
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MAC then Encrypt or  
Encrypt then MAC
• You should never use the same key for the MAC and the Encryption

• Some MACs will break completely if you reuse the key

• Even if it is probably safe (eg, AES for encryption, HMAC for MAC) its still a bad idea


• MAC then Encrypt:

• Compute T = MAC(M,Kmac), send C = E(M||T,Kencrypt)


• Encrypt then MAC:

• Compute C = E(M,Kencrypt), T = MAC(M,Kmac),  

send C||T


• Theoretically they are the same, but...

• Once again, its time for ...
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HTTPS Authentication in 
Practice
• When you log into a web site, it sets a "cookie" in your browser

• All subsequent requests include this cookie so the web server knows who you are


• If an attacker can get your cookie...

• They can impersonate you on the "Secure" site


• And the attacker can create multiple  
tries

• On a WiFi network, inject a bit of JavaScript 

that repeatedly connects to the site

• While as a man-in-the-middle to manipulate  

connections
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The TLS 1.0 "Lucky13" Attack: 
"F-U, This is Cryptography"
• HTTPS/TLS uses MAC then Encrypt

• With CBC encryption


• The Lucky13 attack changes the cipher text in an attempt to discover the 
state of a byte

• But can't predict the MAC

• The TLS connection retries after each failure so the attacker can try multiple times

• Goal is to determine the status each byte in the authentication cookie which is in a known position


• It detects the timing of the error response

• Which is different if the guess is right or wrong

• Even though the underlying algorithm was "proved" secure!


• So always do Encrypt then MAC since,  
once again, it is more mistake tolerant
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The best MAC construction: 
HMAC
• Idea is to turn a hash function into a MAC

• Since hash functions are often much  

faster than encryption

• While still maintaining the properties of  

being a cryptographic hash


• Reduce/expand the key to a  
single hash block


• XOR the key with the i_pad

• 0x363636... (one hash block long)


• Hash ((K ⊕ i_pad) || message)

• XOR the key with the o_pad

• 0x5c5c5c...


• Hash ((K ⊕ o_pad) || first hash)
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function hmac (key, message) { 
    if (length(key) > blocksize) { 
        key = hash(key) 
    } 
    while (length(key) < blocksize) { 
       key = key || 0x00 
    } 
   o_key_pad = 0x5c5c... ⊕ key 
   i_key_pad = 0x3636... ⊕ key    
    return hash(o_key_pad ||  
                hash(i_key_pad || message)) 
} 
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Why This Structure?

• i_pad and o_pad are slightly arbitrary

• But it is necessary for security for the two values 

to be different

• So for paranoia chose very different bit patterns


• Second hash prevents appending data

• Otherwise attacker could add more to the 

message and the HMAC and it would still be a 
valid HMAC for the key


• Wouldn't be a problem with the key at the end but at 
the start makes it easier to capture intermediate 
HMACs


• Is a Pseudo Random Function if the 
underlying hash is a PRF

• AKA if you can break this, you can break the hash!

 9

function hmac (key, message) { 
    if (length(key) > blocksize) { 
        key = hash(key) 
    } 
    while (length(key) < blocksize) { 
       key = key || 0x00 
    } 
   o_key_pad = 0x5c5c... ⊕ key 
   i_key_pad = 0x3636... ⊕ key    
    return hash(o_key_pad ||  
                hash(i_key_pad || message)) 
} 
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Great Properties of HMAC...

• It is still a hash function!

• So all the good things of a cryptographic hash: 

An attacker or even the recipient shouldn't be able to calculate M given 
HMAC(M,K) 

• An attacker who doesn't know K can't even verify if HMAC(M,K) == M

• Very different from the hash alone, and potentially very useful: 

Attacker can't even brute force try to find M based on HMAC(M,K)!


• Its probably safe if you screw up and use the same key for 
both MAC and Encrypt

• Since it is a different algorithm than the encryption function...

• But you shouldn't do this anyway!
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Considerations when using MACs

• Along with messages, can use for data at rest

• E.g. laptop left in hotel, providing you don’t store the key on the laptop

• Can build an efficient data structure for this that doesn’t require re-MAC’ing over entire disk 

image when just a few files change


• MACs in general provide no promise not to leak info about message

• Compute MAC on ciphertext if this matters

• Or just use HMAC, which does promise not to leak info if the  

underlying hash function doesn't


• NEVER use the same key for MAC and  
Encryption...

• Known "FU-this-is-crypto" scenarios reusing an  

encryption key for MAC in some algorithms when its the  
same underlying block cipher for both
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Plus AEAD Encryption Modes...

• The latest block cipher modes are "AEAD":

• Authenticated Encryption with Additional Data


• Provides both integrity and confidentiality over the data

• With integrity also provided for the "Additional Data"


• Used right, these are great

• Assuming you use a library...


• Used wrong...

• The AEAD modes are built for "performance", which means parallelization, 

which means CTR mode, which means IV reuse is a disaster!
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A Lot Of Uses for 
Random Numbers...
• The key foundation for all modern cryptographic systems is 

often not encryption but these "random" numbers!

• So many times you need to get something random:

• A random cryptographic key

• A random initialization vector

• A "nonce" (use-once item)

• A unique identifier

• Stream Ciphers


• If an attacker can predict a random number things can 
catastrophically fail
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Breaking Slot Machines

• Some casinos experienced unusual bad "luck"

• The suspicious players would wait and then all of a sudden 

try to play


• The slot machines have predictable pRNG

• Which was based on the current time & a seed


• So play a little...

• With a cellphone watching

• And now you know when to press "spin" to be more likely 

to win


• Oh, and this never effected Vegas!

• Evaluation standards for Nevada slot machines 

specifically designed to address this sort of issue
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Breaking Bitcoin Wallets

• blockchain.info supports "web wallets"

• Javascript that protects your Bitcoin


• The private key for Bitcoin needs to be 
random

• Because otherwise an attacker can spend the 

money


• An "Improvment" [sic] to the RNG 
reduced the entropy (the actual 
randomness)

• Any wallet created with this improvment was brute-

forceable and could be stolen
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TRUE Random Numbers

• True random numbers generally require a physical process

• Common circuit is an unusable ring oscillator built into the CPU

• It is then sampled at a low rate to generate true random bits which are then fed into a pRNG on the 

CPU


• Other common sources are human  
activity measured at very fine time scales

• Keystroke timing, mouse movements, etc

• "Wiggle the mouse to generate entropy for a key"


• Network/disk activity which is often human driven


• More exotic ones are possible:

• Cloudflare has a wall of lava lamps that are recorded 

by a HD video camera which views the lamps through a  
rotating prism: It is just one source of the randomness
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Combining Entropy

• Many physical entropy sources are biased

• Some have significant biases: e.g. a coin that flips "heads" 90% of the time!

• Some aren't very good: e.g. keystroke timing at a microsecond granularity


• The general procedure is to combine various sources of entropy

• The goal is to be able to take multiple crappy sources of entropy

• Measured in how many bits: 

A single flip of a fair coin is 1 bit of entropy

• And combine into a value where the entropy is the minimum of the sum of all 

entropy sources (maxed out by the # of bits in the hash function itself)

• N-1 bad sources and 1 good source -> good pRNG state
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Pseudo Random Number Generators 
(aka Deterministic Random Bit Generators)
• Unfortunately one needs a lot of random numbers in cryptography

• More than one can generally get by just using the physical entropy source


• Enter the pRNG or DRBG

• If one knows the state it is entirely predictable

• If one doesn't know the state it should be indistinguishable from a random string


• Three operations

• Instantiate: (aka Seed) Set the internal state based on the real entropy sources

• Reseed: Update the internal state based on both the previous state and additional entropy

• The big different from a simple stream cipher


• Generate: Generate a series of random bits based on the internal state

• Generate can also optionally add in additional entropy


• instantiate(entropy)  
reseed(entropy) 
generate(bits, {optional entropy})
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Properties for the pRNG

• Can a pRNG be truly random?

• No.  For seed length s, it can only generate at most 2s distinct possible 

sequences.


• A cryptographically strong pRNG “looks” truly random to 
an attacker


• Attacker cannot distinguish it from a random sequence: 
If the attacker can tell a sufficiently long bitstream was generated by the 
pRNG instead of a truly random source it isn't a good pRNG
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Prediction and Rollback Resistance

• A pRNG should be predictable only if you know the internal state

• It is this predictability which is why its called "pseudo"


• If the attacker does not know the internal state

• The attacker should not be able to distinguish a truly random string from one generated by 

the pRNG


• It should also be rollback-resistant

• Even if the attacker finds out the state at time T, they should not be able to determine what 

the state was at T-1

• More precisely, if presented with two random strings, one truly random and one generated 

by the pRNG at time T-1, the attacker should not be able to distinguish between the two

• Rollback resistance isn't specifically required in a pRNG... 

But it should be
 20
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Why "Rollback Resistance" is Essential

• Assume attacker, at time T, is able to obtain all the internal state of 
the pRNG

• How?  E.g. the pRNG screwed up and instead of an IV, released the internal state, or 

the pRNG is bad...


• Attacker observes how the pRNG was used

• T-1 = Random Session key 

T0 = Nonce/IV


• Now if the pRNG doesn't resist 
rollback, and the attacker gets the  
state at T0, attacker can know the  
session key!  And we are back to...
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More on Seeding and Reseeding

• Seeding should take all the different physical entropy 
sources available


• If one source has 0 entropy, it must not reduce the entropy of the seed

• We can shove a whole bunch of low-entropy sources together and create a 

high-entropy seed


• Reseeding adds in even more entropy

• F(internal_state, new material) 
• Again, even if reseeding with 0 entropy, it must not reduce the entropy of the 

seed
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Probably the best pRNG/DRBG: 
HMAC_DRBG
• Generally believed to be the best

• Accept no substitutes!


• Two internal state registers, V and K

• Each the same size as the hash function's output


• V is used as (part of) the data input into HMAC, while K is the key

• If you can break this pRNG you can either break the underlying 

hash function or break a significant assumption about how 
HMAC works

• Yes, security proofs sometimes are a very good thing and actually do work

• So as long as the security proof for HMAC is correct, the security proof for HMAC_DRBG 

is correct!
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HMAC_DRBG 
Generate
• The basic generation function

• Remarks:

• It requires one HMAC call per blocksize-bits of state

• Then two more HMAC calls to update the internal 

state


• Prediction resistance:

• If you can distinguish new K from random when you 

don't know old K: 
You've distinguished HMAC from a random function! 
Which means you've either broken the hash or the 
HMAC construction


• Rollback resistance:

• If you can learn old K from new K and V: 

You've reversed the hash function!
 24

function hmac_drbg_generate (state, n) { 
  tmp = "" 
  while(len(tmp) < N){ 
     state.v = hmac(state.k,state.v) 
     tmp = tmp || state.v 
  } 
  // Update state with no input 
  state.k = hmac(state.k, state.v || 0x00) 
  state.v = hmac(state.k, state.v) 
  // Return the first N bits of tmp 
  return tmp[0:N] 
} 
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HMAC_DRBG 
Update
• Used instead of the "no-input update" 

when you have additional entropy on 
the generate call


• Used standalone for both instantiate 
(state.k = state.v = 0) and reseed 
(keep state.k and state.v)


• Designed so that even if the attacker 
controls the input but doesn't know k: 
The attacker should not be able to 
predict the new k 
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function hmac_drbg_update (state, input) { 
  state.k = hmac(state.k, state.v || 0x00 
                          || input) 
  state.v = hmac(state.k, state.v) 
  state.k = hmac(state.k, state.v || 0x01 
                          || input) 
  state.v = hmac(state.k, state.v) 
} 



Computer Science 161 Fall 2019 Weaver

Generating true random numbers

• Modern CPUs have true random number generators

• Sample a noisy circuit at a low rate or similar tricks


• These sources are biased...

• They are also slow


• So use this as an entropy source to feed a pRNG on the chip

• Now you can get random numbers quickly


• Very fast

• Vulnerable to tampering!

• You can't actually test that the pRNG circuit is 100% correct without adding paths that 

could potentially sabotage the pRNG circuit

• Sabotage that can reduce effective entropy to 32b are possible
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Stream ciphers

• Block cipher: fixed-size, stateless, requires “modes” to 
securely process longer messages


• Stream cipher: keeps state from processing past message 
elements, can continually process new elements


• Common approach: “one-time pad on the cheap”: 

• XORs the plaintext with some “random” bits


• But: random bits ≠ the key (as in one-time pad)

• Instead: output from cryptographically strong pseudorandom number generator 

(pRNG)

• Anyone who actually calls this a "One Time Pad" is selling snake oil!
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Building Stream Ciphers

• Encryption, given key K and message M:

• Choose a random value IV

• E(M, K) = pRNG(K, IV) ⊕ M 

• Decryption, given key K, ciphertext C, and initialization vector IV:

• D(C, K) = PRNG(K, IV) ⊕ C 

• Can encrypt message of any length 
because pRNG can produce any  
number of random bits...

• But in practice, for an n-bit seed pRNG,  

stop at 2n/2.  Because, of course...
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Using a pRNG to Build 
A Stream Cipher

Mi: ith message 
of plaintext

 29

Mi

(Small) K, IV

PRNG

Keystream

⨁

(Small) K, IV

PRNG

Keystream

⨁
Ci

Alice Bob
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CTR mode is (mostly) a stream cipher

• E(ctr,K) should look like a series of pseudo random 
numbers...


• But after a large amount it is slightly distinguishable!


• Since it is actually a pseudo-random permutation...

• For a cipher using 128b blocks, you will never get the same 128b number until 

you go all the way through the 2128 possible entries on the counter

• Reason why you want to stop after 264

• If you use CTR mode in the first place


• Also very minor information leakage:

• If Ci = Cj, for i != j, it follows that Mi != Mj
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UUID: Universally Unique Identifiers

• You got to have a "name" for something...

• EG, to store a location in a filesystem


• Your name must be unique...

• And your name must be unpredictable!


• Just chose a random value!

• UUID: just chose a 128b random value

• Well, it ends up being a 122b random value with some signaling information


• A good UUID library uses a cryptographically-secure pRNG that is properly seeded


• Often written out in hex as:

• 00112233-4455-6677-8899-aabbccddeeff
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What Happens When The Random Numbers 
Goes Wrong...
• Insufficient Entropy:

• Random number generator is seeded without enough entropy


• Debian OpenSSL CVE-2008-0166

• In "cleaning up" OpenSSL (Debian 'bug' #363516), the author 'fixed' 

how OpenSSL seeds random numbers

• Because the code, as written, caused Purify and Valgrind to complain about 

reading uninitialized memory

• Unfortunate cleanup reduced the pRNG's seed to be just the 

process ID

• So the pRNG would only start at one of ~30,000 starting points


• This made it easy to find private keys

• Simply set to each possible starting point and generate a few private 

keys

• See if you then find the corresponding public keys anywhere on the 

Internet
 32
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And Now Lets 
Add Some RNG Sabotage...
• The Dual_EC_DRBG

• A pRNG pushed by the NSA behind the scenes based on Elliptic Curves


• It relies on two parameters, P and Q on an elliptic curve

• The person who generates P and selects Q=eP can predict the random number 

generator, regardless of the internal state


• It also sucked!

• It was horribly slow and even had subtle biases that shouldn't exist in a pRNG: 

You could distinguish the upper bits from random!


• Now this was spotted fairly early on...

• Why should anyone use such a horrible random number generator?
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Well, anyone not paid that is...

• RSA Data Security accepted 30 pieces of silver  
$10M from the NSA to implement Dual_EC in their  
RSA BSAFE library

• And silently make it the default pRNG


• Using RSA's support, it became a NIST standard

• And inserted into other products...


• And then the Snowden revelations

• The initial discussion of this sabotage in the  

NY Times just vaguely referred to a Crypto  
talk given by Microsoft people...


• That everybody quickly realized referred to Dual_EC
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But this is insanely powerful...

• It isn't just forward prediction but being able to run the generator backwards!

• Which is why Dual_EC is so nasty:   

Even if you know the internal state of HMAC_DRBG it has rollback resistance!


• In TLS (HTTPS) and Virtual Private Networks you have a motif of:

• Generate a random session key

• Generate some other random data that's  

public visible

• EG, the IV in the encrypted channel, or the "random"  

nonce in TLS

• Oh, and an NSA sponsored "standard" to spit out even more 

"random" bits!


• If you can run the random number 
generator backwards, you can find the  
session key
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It Got Worse: 
Sabotaging Juniper
• Juniper also used Dual_EC in their Virtual Private Networks

• "But we did it safely, we used a different Q"


• Sometime later, someone else noticed this...

• "Hmm, P and Q are the keys to the backdoor... 

Lets just hack Juniper and rekey the lock!"

• And whoever put in the first Dual_EC then went "Oh crap, we got locked out but we can't do anything about it!"


• Sometime later, someone else goes...

• "Hey, lets add an ssh backdoor"


• Sometime later, Juniper goes

• "Whoops, someone added an ssh backdoor, lets see  

what else got F'ed with, oh, this # in the pRNG"


• And then everyone else went

• "Ohh, patch for a backdoor.  Lets see what got fixed.   

Oh, these look like Dual_EC parameters..."
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Sabotaging "Magic Numbers" 
In General
• Many cryptographic implementations depend on "magic" numbers

• Parameters of an Elliptic curve

• Magic points like P and Q

• Particular prime p for Diffie/Hellman

• The content of S-boxes in block cyphers


• Good systems should cleanly  
describe how they are generated

• In some sound manner (e.g. AES's S-boxes)

• In some "random" manner defined by a pRNG with a specific seed

• Eg, seeded with "Nicholas Weaver Deserves Perfect Student Reviews"... 

Needs to be very low entropy so the designer can't try a gazillion seeds
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Because Otherwise You 
Have Trouble...
• Not only Dual-EC's P and Q

• Recent work: 1024b Diffie/Hellman moderately impractical...

• But you can create a sabotaged prime that is 1/1,000,000 the work to crack! 

And the most often used "example" p's origin is lost in time!


• It can cast doubt even when a design is solid:

• The DES standard was developed by IBM but with input from the NSA

• Everyone was suspicious about the NSA tampering with the S-boxes...

• They did: The NSA made them stronger against 

an attack they knew but the public didn't

• The NSA-defined elliptic curves P-256 and P-384

• I trust them because they are in CNSA so the  

NSA uses them for TS communication: 
A backdoor here would be absolutely unacceptable... 
but only because I actually believe the NSA wouldn't go 
and try to shoot itself in the head!
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So What To Use?

• AES-128-CFB or AES-256-CFB:

• Robust to screwups encryption

• Alternately, AES-128-GCM (Galios Counter Mode): 

An AEAD mode, but is NOT resistant to screwups


• SHA-2 or SHA-3 family (256b, 384b, or 512b):

• Robust cryptographic hashes, SHA-1 and MD5 are broken


• HMAC-SHA256 or HMAC-SHA3:

• Different function than the encryption: 

Prevents screwups on using the same key & is a hash if not using an AEAD mode

• Always Encrypt Then MAC!


• HMAC-SHA256-DRBG or HMAC-SHA3-DRBG:

• The best pRNG available

• Seed using both the processor random number generator AND other entropy sources!


• Don't use the processor RNG bare when building a software cryptosystem: 
Those are potentially sabotage able and use designs without rollback resistance.
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Public Key...

• All our previous primitives required a "miracle":

• We somehow have to have Alice and Bob get a shared k.


• Enter Public Key cryptography: the miracle of modern cryptography

• How starting Friday, but what today


• Three primitives:

• Public Key Agreement

• Public Key Encryption

• Public Key Signatures


• Based on some families of magic math...

• For us, we will use some group-theory based primitives

 40
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Public Key Agreement

• Alice and Bob have a channel...

• There may be an eavesdropper but not a manipulator


• The goal: Alice & Bob agree on a random value

• This will be k for all subsequent communication


• When done, the key is thrown away

• Designed to prevent an attacker who later recovers Alice or Bob's long lived 

secrets from finding k.
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Public Key Encryption

• Alice has two keys:

• Kpub: Her public key, anyone can know

• Kpriv: Her private key, a deep dark secret


• Anyone has access to Alice's public key

• For anyone to send a message to Alice:

• Create a random session key k

• Used to encrypt the rest of the message


• Encrypt k using Alice's Kpub.


• Only Alice can decrypt the message

• The decryption function only works with Kpriv!
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Public Key Signatures

• Once again, Alice has two keys:

• Kpub: Her public key, anyone can know

• Kpriv: Her private key, a deep dark secret


• She can sign a message

• Calculate H(M)

• S(Kpriv, H(M)): Sign H(M) with Kpriv. 

• Anyone can now verify

• Recalculate H(M)

• V(Kpub, S(Kpriv, H(M), H(M)): Verify that the signature was created with Kpriv

 43



Computer Science 161 Fall 2019 Weaver

Things To Remember...

• Public key is slow!

• Orders of magnitude slower than symmetric key


• Public key is based on delicate magic math

• Discrete log in a group is the most common

• RSA

• Some new "post-quantum" magic...


• Some systems in particular are easy to get wrong

• We will get to some of the epic crypto-fails later
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Our Roadmap For Public Key...

• Public Key:

• Something everyone can know


• Private Key:

• The secret belonging to a specific person


• Diffie/Hellman:

• Provides key exchange with no pre-shared secret


• ElGamal & RSA:

• Provide a message to a recipient only knowing the recipient's public key


• DSA & RSA signatures:

• Provide a message that anyone can prove was generated with a private key
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Diffie-Hellman Key Exchange

• What if instead they can somehow generate a random key when 
needed?


• Seems impossible in the presence of Eve observing all of their 
communication …

• How can they exchange a key without her learning it?


• But: actually is possible using public-key technology

• Requires that Alice & Bob know that their messages will reach one another without any 

meddling


• Protocol: Diffie-Hellman Key Exchange (DHE)

• The E is "Ephemeral", we use this to create a temporary key for other uses and then 

forget about it
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Diffie-Hellman Key Exchange

 47

Alice Bob

Eve

1.Everyone agrees in advance on a 
well-known (large) prime p and a 
corresponding g: 1 < g < p-1

p, g

p, g

p, g
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DHE

 48

Alice Bob

Eve

2.Alice picks random secret ‘a’: 1 < a < p-1 

3.Bob picks random secret ‘b’: 1 < b < p-1

p, g

p, g

p, g

a b

a? b?
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DHE

 49

Alice Bob

Eve

4. Alice sends A = ga mod p to Bob

5. Bob sends B = gb mod p to Alice 

 
Eve sees these

p, g

p, g

p, g

a b

a? b?

A = ga mod pA

A

gb mod p = BB

B
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DHE

 50

Alice Bob

Eve

6. Alice knows {a, A, B}, computes  
K = Ba mod p = (gb)a = gba mod p 

7. Bob knows {b, A, B}, computes  
K = Ab mod p = (ga)b = gab mod p 

8. K is now the shared secret key.

p, g

p, g

p, g

a b

a? b?

A = ga mod pA

A

gb mod p = BB

B

A
B

K K
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Alice Bob

Evep, g

p, g

p, g

a b

a? b?
A
B

K K

While Eve knows {p, g, ga mod p, gb mod p}, believed to be 
computationally infeasible for her to then deduce K = gab mod p. 
She can easily construct A∙B = ga∙gb mod p = ga+b mod p.  
But computing gab requires ability to take discrete logarithms mod p. 
Discrete log over the group defined by p and g presumed to be hard
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This is Ephemeral Diffie/Hellman

• K = gab mod p is used as the basis for a "session key"

• A symmetric key used to protect subsequent communication between Alice 

and Bob

• In general, public key operations are vastly more expensive than symmetric key, so it 

is mostly used just to agree on secret keys, transmit secret keys, or sign hashes

• If either a or b is random, K is random


• When Alice and Bob are done, they discard K, a, b

• This provides forward secrecy:  Alice and Bob don't retain any information 

that a later attacker who can compromise Alice or Bob's secrets could use to 
decrypt the messages exchanged with K.
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Diffie Hellman is part of more generic problem

• This involved deep mathematical voodoo called "Group Theory"

• Its actually done under a group G


• Two main groups of note:

• Numbers mod p with generator g

• Point addition in an elliptic curve C

• Usually identified by number, eg. p256, p384 (NSA-developed curves) or  

Curve25519 (developed by Dan Bernstein, also 256b long)


• So EC (Elliptic Curve) == different group

• Thought to be harder so fewer bits: 384b ECDHE ?= 3096b DHE

• But otherwise, its "add EC to the name" for something built on discrete log
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