
Computer Science 161 Fall 2020 Weaver

Crypto 5: 
Key Exchanges & Snake Oil

 1

Computer Science 161 Fall 2020 Weaver

Administrivia!

• Project 1 due Friday at 11:59 PM Pacific

• Reminder, you have slip days if you need them

• If you need to ask for an extension (DSP or not) please fill out the form on the

web site! https://cs161.org/extensions

• Homework 2 due Monday at 11:59 PM Pacific

• Reminder, slip days do not apply

• Reminder:

• Zoom chat for conversation

• Zoom Q&A for Questions & Answers

 2

https://cs161.org/extensions

Computer Science 161 Fall 2020 Weaver

Nick (Tries) To Do A Better Job 
Explaining Feistel Networks (e.g. OAEP)
• G and H are not (necessarily)

reversible

• EG, for OAEP it is a hash function: 

Designed to mix in the randomness and
make it uniform

• Needed for RSA because we want to
only ever encrypt "random" values with
the public key

• But XOR is!

• So we do H(X) xor Y to recover r

• And now G(r) xor X to recover m

 3

Computer Science 161 Fall 2020 Weaver

How Can We Communicate With Someone New?

• Public-key crypto gives us amazing capabilities to achieve
confidentiality, integrity & authentication without shared secrets …

• But how do we solve MITM attacks?

• How can we trust we have the true public key for someone we

want to communicate with?

• But we have some good primitives

• Public key encryption:  

With the public key, anyone can encrypt but only the private key decrypts

• Signatures: 

With the public key, anyone can verify but only the private key signs

 4

Computer Science 161 Fall 2020 Weaver

Trusted Authorities

• Suppose there’s a party that everyone agrees to trust to
confirm each individual’s public key

• Say the Governor of California

• Issues with this approach?

• How can everyone agree to trust them?

• Scaling: huge amount of work;  

single point of failure …

• ... and thus Denial-of-Service concerns

• How do you know you’re talking to the right authority??

 5

Computer Science 161 Fall 2020 Weaver

Trust Anchors

• Suppose the trusted party distributes their key so everyone
has it …

• And now think about doing things "off-line":

• The trusted entity only has to do work once for each person

• And can do it in advance

 6

Computer Science 161 Fall 2020 Weaver

 7

Computer Science 161 Fall 2020 Weaver

 8

Computer Science 161 Fall 2020 Weaver

 9

Gavin Newsom's Public Key is
0x6a128b3d3dc67edc74d690b19e072f64

Computer Science 161 Fall 2020 Weaver

Trust Anchors

• Suppose the trusted party distributes their key so everyone
has it …

• We can then use this to bootstrap trust

• As long as we have confidence in the decisions that that party makes

 10

Computer Science 161 Fall 2020 Weaver

Digital Certificates

• Certificate (“cert”) = signed claim about someone’s public key

• More broadly: a signed attestation about some claim

• Notation: 
	{ M }K = “message M encrypted with public key k” 
	{ M }K-1 = “message M signed w/ private key for K”

• E.g. M = “Nick's public key is KNick = 0xF32A99B...” 
Cert: M,  
 {“Nick's public key … 0xF32A99B...” }K -1Gavin 
		 = 0x923AB95E12...9772F

 11

Computer Science 161 Fall 2020 Weaver

 12

Gavin Newsom hearby asserts: 
Nick’s public key is KNick = 0xF32A99B...
The signature for this statement using  
K-1Gavin is 0x923AB95E12...9772F  
 
 

Computer Science 161 Fall 2020 Weaver

Gavin Newsom hearby asserts: 
Nick’s public key is KNick = 0xF32A99B...
The signature for this statement using  
K-1Gavin is 0x923AB95E12...9772F  
 
 

 13

This

Computer Science 161 Fall 2020 Weaver

Gavin Newsom hearby asserts: 
Nick’s public key is KNick = 0xF32A99B...
The signature for this statement using  
K-1Gavin is 0x923AB95E12...9772F  
 
 

 14

is computed over all of this

Computer Science 161 Fall 2020 Weaver

Gavin Newsom hearby asserts: 
Nick’s public key is KNick = 0xF32A99B...
The signature for this statement using  
K-1Gavin is 0x923AB95E12...9772F  
 
 

 15

and can be
validated using:

Computer Science 161 Fall 2020 Weaver

Gavin Newsom hearby asserts: 
Nick’s public key is KNick = 0xF32A99B...
The signature for this statement using  
K-1Gavin is 0x923AB95E12...9772F  
 
 

 16

This:

Computer Science 161 Fall 2020 Nicholas Weaver

If We Find This Cert  
Shoved Under Our Door …
• What can we figure out?

• If we know Gavin's key, then whether he indeed signed the statement

• If we trust Gavin’s decisions, then we have confidence we really have Nick's

key

• Trust = ?

• Gavin won’t willy-nilly sign such statements

• Gavin won’t let his private key be stolen

 17

Computer Science 161 Fall 2020 Nicholas Weaver

Analyzing Certs Shoved Under Doors …

• How we get the cert doesn’t affect its utility

• Who gives us the cert doesn’t matter

• They’re not any more or less trustworthy because they did

• Possessing a cert doesn’t establish any identity!

• However: if someone demonstrates they can decrypt data
encrypted with Knick, then we have high confidence they
possess K-1Nick

• Same for if they show they can sign “using” K-1Nick

 18

Computer Science 161 Fall 2020 Nicholas Weaver

Scaling Digital Certificates

• How can this possibly scale? Surely Gavin can’t sign
everyone’s public key!

• Approach #1: Introduce hierarchy via delegation

• { “Michael V. Drake's public key is 0x... and I trust her to vouch for UC” }K -1Gavin

• { “Carol Christ’s public key is 0x... and I trust her to vouch for UCB” }K -1Mike

• { “John Canny's public key is 0x... and I trust him to vouch for EECS” }K -1Carol

• { “Nick Weaver's public key is 0x...” }K -1John

 19

Computer Science 161 Fall 2020 Nicholas Weaver

Scaling Digital Certificates, con’t

• Nick puts this last on his web page

• (or shoves it under your door)

• Anyone who can gather the intermediary keys can validate the
chain

• They can get these (other than Gavin’s) from anywhere because they can validate

them, too

• In fact, I may as well just include those certs as well, just to make sure you don't gave

to go search for them

• Approach #2: have multiple trusted parties who are in the
business of signing certs …

• (The certs might also be hierarchical, per Approach #1)

 20

Computer Science 161 Fall 2020 Nicholas Weaver

Certificate Authorities

• CAs are trusted parties in a Public Key Infrastructure (PKI)

• They can operate offline

• They sign (“cut”) certs when convenient, not on-the-fly (… though see

below ...)

• Suppose Alice wants to communicate confidentially w/ Bob:

• Bob gets a CA to issue {Bob’s public key is B} K -1CA

• Alice gets Bob’s cert any old way

• Alice uses her known value of KCA to verify cert’s signature

• Alice extracts B, sends {M}KB to Bob

 21

Computer Science 161 Fall 2020 Nicholas Weaver

 22

Bob

b

CA

B

Is this
really
Bob?

{Bob: B}K-1
CA

Computer Science 161 Fall 2020 Nicholas Weaver

 23

Bob

b
B

Alice

Mi

{Bob: B}K-1
CA

I’d like to
talk privately
with Bob

Computer Science 161 Fall 2020 Nicholas Weaver

 24

Bob

b
B

Alice

Mi

{Bob: B}K-1
CA

Does CA’s
signature on
B validate?

Mi

Ci = E(Mi, B)

Computer Science 161 Fall 2020 Nicholas Weaver

 25

Bob

b*

CA

B*

Is this
really
Bob?

Mallory

X

Computer Science 161 Fall 2020 Nicholas Weaver

 26

Bob

CA

Is this
really
Mal?

{Mal: B*}K-1
CA

b*

Mallory

B*

Computer Science 161 Fall 2020 Nicholas Weaver

 27

BobAlice

Mi

{Mal: B*}K-1
CA

b*

B*

Mallory

I’d like to
talk privately
with Bob

Computer Science 161 Fall 2020 Nicholas Weaver

 28

BobAlice

Mi

{Mal: B*}K-1
CA

Wait, I want
to talk to Bob,
not Mallory!

b*

B*

Mallory

X

Computer Science 161 Fall 2020 Nicholas Weaver

Revocation

• What do we do if a CA screws up and issues a cert in Bob’s
name to Mallory?

 29

Computer Science 161 Fall 2020 Nicholas Weaver

 30

BobAlice

Mi

{Bob: B*}K-1
CA

b*

B*

Mallory

I’d like to
talk privately
with Bob

{Bob: B*}K-1
CA

Computer Science 161 Fall 2020 Nicholas Weaver

Revocation

• What do we do if a CA screws up and issues a cert in Bob’s name
to Mallory?

• E.g. Verisign issued a Microsoft.com cert to a Random Joe

• (Related problem: Bob realizes b has been stolen)

• How do we recover from the error?
• Approach #1: expiration dates

• Mitigates possible damage

• But adds management burden

• Benign failures to renew will 

break normal operation

• LetsEncrypt decided to make this VERY short 

to force continual updating
 31

{Bob: B,  
Exp: 3/31/21}K-1CA

Computer Science 161 Fall 2020 Nicholas Weaver

Revocation, con’t

• Approach #2: announce revoked certs

• Users periodically download cert revocation list (CRL)

 32

Computer Science 161 Fall 2020 Nicholas Weaver

 33

BobAlice

b*

B*

Mallory

Time for my
weekly revoked
cert download

CA

Revoked
Certs  
…
{Bob: B*}K-1

CA

…CRL = Certificate
Revocation List

Computer Science 161 Fall 2020 Nicholas Weaver

 34

BobAlice

b*

B*

Mallory

Oof!

CA

Revoked
Certs  
…
{Bob: B*}K-1

CA

…

CRL = Certificate
Revocation List

Computer Science 161 Fall 2020 Nicholas Weaver

Revocation, con’t

• Approach #2: announce revoked certs

• Users periodically download cert revocation list (CRL)

• Issues?

• Lists can get large

• Need to authenticate the list itself – how?

 35

Computer Science 161 Fall 2020 Nicholas Weaver

 36

BobAlice

b*

B*

Mallory

Time for my
weekly revoked
cert download

CA

Revoked
Certs  
…
{Bob: B*}K-1

CA

…CRL = Certificate
Revocation List

K-1
CA

Computer Science 161 Fall 2020 Nicholas Weaver

Revocation, con’t

• Approach #2: announce revoked certs

• Users periodically download cert revocation list (CRL)

• Issues?

• Lists can get large

• Need to authenticate the list itself – how? Sign it!

• Mallory can exploit download lag

• What does Alice do if can’t reach CA for  

download?

• Assume all certs are invalid (fail-safe defaults)

• Wow, what an unhappy failure mode!

• Use old list: widens exploitation window 
if Mallory can “DoS” CA (DoS = denial-of-service)

 37

Computer Science 161 Fall 2020 Nicholas Weaver

Biggest Problem is Often 
Complexity
• The X509 "standard" for certificates is incredibly

complicated

• Why? Because it tried to do everything...

• If you want your eyes to bleed...

• https://tools.ietf.org/html/rfc5280

•

 38

https://tools.ietf.org/html/rfc5280

Computer Science 161 Fall 2020 Nicholas Weaver

The (Failed) Alternative: 
The “Web Of Trust”
• Alice signs Bob’s Key

• Bob Sign’s Carol’s

• So now if Dave has Alice’s key, Dave can believe Bob’s key
and Carol’s key…

• Eventually you get a graph/web of trust…

• PGP started out with this model

• You would even have PGP key signing parties

• But it proved to be a disaster: 

Trusting central authorities can make these problems so much simpler!

 39

Computer Science 161 Fall 2020 Nicholas Weaver

The Facebook Problem: 
Applied Cryptography in Action
• Facebook Messenger now has an encrypted chat option

• Limited to their phone application

• The cryptography in general is very good

• Used a well regarded asynchronous messenger library (from Signal) with many good

properties, including forward secrecy

• When Alice wants to send a message to Bob

• Queries for Bob's public key from Facebook's server

• Encrypts message and send it to Facebook

• Facebook then forwards the message to Bob

• Both Alice and Bob are using encrypted and authenticated channels
to Facebook

 40

Computer Science 161 Fall 2020 Nicholas Weaver

Facebook's Unique Messenger 
Problem: Abuse
• Much of Facebook's biggest problem is dealing with abuse...

• What if either Alice or Bob is a stalker, an a-hole, or otherwise problematic?

• Aside: A huge amount of abuse is explicitly gender based, so I'm going to use "Alex" as the

abuser and "Bailey" as the victim through the rest of this example

• Facebook would expect the other side to complain

• And then perhaps Facebook would kick off the perpetrator for violating Facebook's

Terms of Service

• But fake abuse complaints are also a problem

• So can't just take them on face value

• And abusers might also want to release info publicly

• Want sender to be able to deny to the public but not to Facebook

 41

Computer Science 161 Fall 2020 Nicholas Weaver

Facebook's Problem 
Quantified
• Unless Bailey forwards the unencrypted message to

Facebook

• Facebook must not be able to see the contents of the message

• If Bailey does forward the unencrypted message to Facebook

• Facebook must ensure that the message is what Alex sent to Bailey

• Nobody but Facebook should be able to verify this: 
No public signatures!

• Critical to prevent abusive release of messages to the public being verifiable: 

Messages are deniable for everybody but Facebook

 42

Computer Science 161 Fall 2020 Nicholas Weaver

The Protocol 
In Action

 43

Alex Bailey

What Is Bailey's Public 
Key?

Computer Science 161 Fall 2020 Nicholas Weaver

Aside: Key Transparency...

• Both Alex and Bailey are trusting Facebook's honesty...

• What if Facebook gave Alex a different key for Bailey? How would he know?

• Facebook messenger has a nearly hidden option which allows
Alex to see Bailey's key

• If they ever get together, they can manually verify that Facebook was honest by looking

at a series of "safety numbers" or QR code

• The mantra of central key servers: Trust but Verify

• The simple option is enough to force honesty, as each attempt to lie has some

probability of being caught

• This is the biggest weakness of Apple iMessage:

• iMessage has (fairly) good cryptography but there is no way to verify Apple's honesty

 44

Computer Science 161 Fall 2020 Nicholas Weaver

The Protocol 
In Action

 45

Alex Bailey

{message=E(Kpub_b,
 M={"Hey Bailey, my zipper has  
 a problem, see photo",  
 krand}),
 mac=HMAC(krand, M),
 to=Bailey}

{message=E(Kpub_b,
 M={"Hey Bailey, my zipper has  
 a problem, see photo",  
 krand}),
 mac=HMAC(krand, M),
 to=Bailey,
 from=Alex,
 time=now,
 fbmac=HMAC(Kfb,{mac, from,
 to, time})}

Computer Science 161 Fall 2020 Nicholas Weaver

Some Notes

• Facebook can not read the message or even verify Alex's HMAC

• As the key for the HMAC is in the message itself

• Only Facebook knows their HMAC key

• And its the only information Facebook needs to retain in this protocol: 

Everything else can be discarded

• Bailey upon receipt checks that Alex's HMAC is correct

• Otherwise Bailey's messenger silently rejects the message

• Forces Alex's messenger to be honest about the HMAC, even thought Facebook never verified it

• Bailey trusts Facebook when Facebook says the message is from Alex

• Bailey does not verify a signature, because there is no signature to verify… 

But the Signal protocol uses an ephemeral key agreement so that implicitly verifies Alex as
well

 46

Computer Science 161 Fall 2020 Nicholas Weaver

Now To 
Report Abuse

 47

Alex Bailey

{Abuse{
 M={"Hey Bailey, my zipper has  
 a problem, see photo",  
 krand}},
 mac=HMAC(krand, M),
 to=Bailey,
 from=Alex,
 time=now,
 fbmac=HMAC(Kfb,{mac, from,
 to, time})}

Computer Science 161 Fall 2020 Nicholas Weaver

Facebook's Verification

• First verify that Bailey correctly reported the message sent

• Verify fbmac=HMAC(Kfb,{mac,from,to,time})
• Only Facebook can do this verification since they keep Kfb secret

• This enables Facebook to confirm that this is the message that it relayed from Alex to
Bailey

• Then verify that Bailey didn't tamper with the message

• Verify mac=HMAC(krand,{M, krand})

• Now Facebook knows this was sent from Alex to Bailey and can
act accordingly

• But Bailey can't prove that Alex sent this message to anyone other than Facebook

• And Bailey can't tamper with the message because the HMAC is also a hash

 48

Computer Science 161 Fall 2020 Nicholas Weaver

Snake Oil Cryptography: 
Craptography
• "Snake Oil" refers to 19th century 

fraudulent "cures"

• Promises to cure practically every ailment

• Sold because there was no regulation and  

no way for the buyers to know

• The security field is practically full of Snake Oil Security
and Snake Oil Cryptography

• https://www.schneier.com/crypto-gram/archives/1999/0215.html#snakeoil

 49

https://www.schneier.com/crypto-gram/archives/1999/0215.html#snakeoil

Computer Science 161 Fall 2020 Nicholas Weaver

Anti-Snake Oil: 
NSA's CNSA cryptographic suite
• Successor to "Suite B"

• Unclassified algorithms approved for Top Secret:

• There is nothing higher than TS, you have "compartments" but those are access control modifiers

• https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm

• Symmetric key, AES: 256b keys

• Hashing, SHA-384

• RSA/Diffie Helman: >= 3072b keys

• ECDHE/ECDSA: 384b keys over curve P-384

• In an ideal world, I'd only use those parameters,

• But a lot of "strong" commercial is 128b AES, SHA-256, 2048b RSA/DH, 256b elliptic curves,

plus the DJB curves and cyphers (ChaCha20)

• NSA has a requirement where a Top Secret communication captured today should not be

decryptable by an adversary 40 years from now!
 50

Computer Science 161 Fall 2020 Nicholas Weaver

Snake Oil Warning 
Signs...
• Amazingly long key lengths

• The NSA is super paranoid, and even they don't use >256b keys for symmetric key or >4096b for

RSA/DH public key

• So if a system claims super long keys, be suspicious

• New algorithms and crazy protocols

• There is no reason to use a novel block cipher, hash, public key algorithm, or protocol

• Even a "post quantum" public key algorithm should not be used alone: 

Combine it with a conventional public key algorithm

• Anyone who roles their own is asking for trouble!

• EG, Telegram

• "It's like someone who had never seen cake but heard it described tried to bake one.  

With thumbtacks and iron filings." Matthew D Green

• "Exactly! GLaDOS-cake encryption.  

Odd ingredients; strange recipe; probably not tasty; may explode oven. :)" Alyssa Rowan
 51

Computer Science 161 Fall 2020 Nicholas Weaver

Snake Oil Warning

Signs...
• "One Time Pads"

• One time pads are secure, if you actually have a true one time pad

• But almost all the snake oil advertising it as a "one time pad" isn't!

• Instead, they are invariably some wacky stream cypher

• Gobbledygook, new math, and "chaos"

• Kinda obvious, but such things are never a good sign

• Rigged "cracking contests"

• Usually "decrypt this message" with no context and no structure

• Almost invariably a single or a few unknown plaintexts with nothing else

• Telegram, I'm looking at you here!

 52

Computer Science 161 Fall 2020 Nicholas Weaver

A Recent Example: Crown-Sterling's "Time-AI
crypto and breaking RSA" talk @ Blackhat

 53

Computer Science 161 Fall 2020 Nicholas Weaver

So They Double-Down

 54

Computer Science 161 Fall 2020 Nicholas Weaver

Nick Brings The FIRE!

 55

Computer Science 161 Fall 2020 Nicholas Weaver

Lots in the Cryptocurrency Space…

• The biggest being IOTA (aka IdiOTA), a “internet of Things”
cryptocurrency…

• That doesn’t use public key signatures, instead a hash based scheme that

means you can never reuse a key…

• And results in 10kB+ signatures! (Compared with RSA which is <450B, and those are big)

• That has created their own hash function…

• That was quickly broken!

• That is supposed to end up distributed…

• But relies entirely on their central authority

• That uses trinary math!?!

• Somehow claiming it is going to be better, but you need entirely new processors…

 56

Computer Science 161 Fall 2020 Nicholas Weaver

Unusability: 
No Public Keys
• The APCO Project 25 radio protocol

• Supports encryption on each traffic group

• But each traffic group uses a single shared key

• All fine and good if you set everything up at once...

• You just load the same key into all the radios

• But this totally fails in practice: what happens when you need to coordinate with

somebody else who doesn't have the same keys?

• Made worse by bad user interface and users who think
rekeying frequently is a good idea

• If your crypto is good, you shouldn't need to change your crypto keys

• "Why (Special Agent) Johnny (Still) Can't Encrypt

• http://www.crypto.com/blog/p25

 57

Computer Science 161 Fall 2020 Nicholas Weaver

Unusability: 
PGP
• I hate Pretty Good Privacy

• But not because of the cryptography...

• The PGP cryptography is decent...

• Except it lacks "Forward Secrecy":  

If I can get someone's private key I can decrypt all their old messages

• The metadata is awful...

• By default, PGP says who every message is from and to

• It makes it much faster to decrypt

• It is hard to hide metadata well, but its easy to do things better than what PGP does

• It is never transparent

• Even with a "good" client like GPG-tools on the Mac

• And I don't have a client on my cellphone

 58

Computer Science 161 Fall 2020 Nicholas Weaver

Unusability: 
How do you find someone's PGP key?
• Go to their personal website?

• Check their personal email?

• Ask them to mail it to you

• In an unencrypted channel?

• Check on the MIT keyserver?

• And get the old key that was mistakenly uploaded and can never be removed?

 59

Computer Science 161 Fall 2020 Nicholas Weaver

Unusability: 
openssl libcrypto and libssl
• OpenSSL is a nightmare...

• A gazillion different little functions needed to do

anything

• So much of a nightmare that I'm not
going to bother learning it to teach you
how bad it is

• This is why the old python-based project didn't give

this raw

• But just to give you an idea: 
The command line OpenSSL utility
options:

 60

Computer Science 161 Fall 2020 Nicholas Weaver

And On To Linked Lists Blockchains

And CryptoCurrencies
• “Blockchain Technology”

• A fancy word for “Append-Only Data Structure”

• That causes people’s eyes to glaze over and them to throw money at people

• “Private/Permissioned Blockchain”:

• A setup where only one or a limited number of systems are authorized to append to the log

• AKA 20 year old, well known techniques

• “Public/Permissionless Blockchain”:

• Anybody can participate as appenders so there is supposedly no central authority: 

Difficulty comes in removing “sibyls”

• Cryptocurrencies

• Things that don’t actually work as currencies… 

More on Tuesday...
 61

Computer Science 161 Fall 2020 Nicholas Weaver

Hash Chains

• If a data structure includes a hash of the previous block of
data: This forms a “hash chain”

• So rather than the hash of a block validating just the
block: 
The inclusion of the previous block’s hash validates all the
previous blocks

• This also makes it easy to add blocks to data structures

• Only need to hash block + hash of previous block, rather than rehash

everything: 
How you can efficiently hash an "append only" datastructure

• Now just validate the head (e.g. with signatures) and voila!

• All a “blockchain” is is a renamed hashchain! 

Linked timestamping services used this structure and were proposed back
in 1990!

 62

Block N
H(Block N-1)

lots of other data

Block N - 1  
H(Block N-2)

lots of other data

Block N - 2  
H(Block N-3)

lots of other data

Computer Science 161 Fall 2020 Nicholas Weaver

Merkle Trees

• Lets say you have a lot of elements

• And you want to add or modify elements

• And you want to make the hash of the set
easy to update

• Enter hash trees/merkle trees

• Elements 0, 1, 2, 3, 4, 5...

• H(0), H(1), H(2)...

• H(H(0) + H(1)), H(H(2)+H(3))...

• The final hash is the root of the top of the tree.

• And so on until you get to the root

• Allows you to add an element and update lg(n) hashes 

Rather than having to rehash all the data

• Patented in 1979!!

 63

Image Stolen from Wikipedia

Computer Science 161 Fall 2020 Nicholas Weaver

A Trivial Private Blockchain…

• We have a single server s, with keys Kpub and Kpriv…

• And a git archive g… (in which we fix git to use SHA-256)

• Whenever we issue a pull request…

• The server validates that the pull request meets the allowed criteria

• Accepts the pull request

• Signs the head…

• And that is it!

• Git is an append only data structure, and by signing the new head, we have the server

authenticating the entire archive!

• This is why “private” blockchain is not a revolution!!!

• Anything that would benefit from an append-only, limited writer database already has one!

 64

