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Crypto 5: 
Key Exchanges & Snake Oil
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Administrivia!

• Project 1 due Friday at 11:59 PM Pacific

• Reminder, you have slip days if you need them

• If you need to ask for an extension (DSP or not) please fill out the form on the 

web site! https://cs161.org/extensions


• Homework 2 due Monday at 11:59 PM Pacific

• Reminder, slip days do not apply


• Reminder:

• Zoom chat for conversation

• Zoom Q&A for Questions & Answers
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Nick (Tries) To Do A Better Job 
Explaining Feistel Networks (e.g. OAEP)
• G and H are not (necessarily) 

reversible

• EG, for OAEP it is a hash function: 

Designed to mix in the randomness and 
make it uniform


• Needed for RSA because we want to 
only ever encrypt "random" values with 
the public key


• But XOR is!

• So we do H(X) xor Y to recover r

• And now G(r) xor X to recover m
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How Can We Communicate With Someone New?

• Public-key crypto gives us amazing capabilities to achieve 
confidentiality, integrity & authentication without shared secrets …


• But how do we solve MITM attacks?

• How can we trust we have the true public key for someone we 

want to communicate with?

• But we have some good primitives

• Public key encryption:  

With the public key, anyone can encrypt but only the private key decrypts

• Signatures: 

With the public key, anyone can verify but only the private key signs
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Trusted Authorities

• Suppose there’s a party that everyone agrees to trust to 
confirm each individual’s public key


• Say the Governor of California


• Issues with this approach?

• How can everyone agree to trust them?

• Scaling: huge amount of work;  

single point of failure …

• ... and thus Denial-of-Service concerns

• How do you know you’re talking to the right authority??
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Trust Anchors

• Suppose the trusted party distributes their key so everyone 
has it …


• And now think about doing things "off-line":

• The trusted entity only has to do work once for each person

• And can do it in advance
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Gavin Newsom's Public Key is 
0x6a128b3d3dc67edc74d690b19e072f64 
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Trust Anchors

• Suppose the trusted party distributes their key so everyone 
has it …


• We can then use this to bootstrap trust

• As long as we have confidence in the decisions that that party makes
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Digital Certificates

• Certificate (“cert”) = signed claim about someone’s public key

• More broadly: a signed attestation about some claim


• Notation: 
	{ M }K = “message M encrypted with public key k” 
	{ M }K-1 = “message M signed w/ private key for K”


• E.g. M = “Nick's public key is KNick = 0xF32A99B...” 
Cert: M,   
     {“Nick's public key … 0xF32A99B...” }K -1Gavin 
		 = 0x923AB95E12...9772F
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Gavin Newsom hearby asserts: 
Nick’s public key is KNick = 0xF32A99B...
The signature for this statement using  
K-1Gavin is 0x923AB95E12...9772F  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Gavin Newsom hearby asserts: 
Nick’s public key is KNick = 0xF32A99B...
The signature for this statement using  
K-1Gavin is 0x923AB95E12...9772F  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Gavin Newsom hearby asserts: 
Nick’s public key is KNick = 0xF32A99B...
The signature for this statement using  
K-1Gavin is 0x923AB95E12...9772F  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is computed over all of this
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Gavin Newsom hearby asserts: 
Nick’s public key is KNick = 0xF32A99B...
The signature for this statement using  
K-1Gavin is 0x923AB95E12...9772F  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and can be 
validated using:
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Gavin Newsom hearby asserts: 
Nick’s public key is KNick = 0xF32A99B...
The signature for this statement using  
K-1Gavin is 0x923AB95E12...9772F  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If We Find This Cert  
Shoved Under Our Door …
• What can we figure out?

• If we know Gavin's key, then whether he indeed signed the statement

• If we trust Gavin’s decisions, then we have confidence we really have Nick's 

key


• Trust = ?

• Gavin won’t willy-nilly sign such statements

• Gavin won’t let his private key be stolen
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Analyzing Certs Shoved Under Doors …

• How we get the cert doesn’t affect its utility

• Who gives us the cert doesn’t matter

• They’re not any more or less trustworthy because they did

• Possessing a cert doesn’t establish any identity!


• However: if someone demonstrates they can decrypt data 
encrypted with Knick, then we have high confidence they 
possess K-1Nick


• Same for if they show they can sign “using” K-1Nick

 18



Computer Science 161 Fall 2020 Nicholas Weaver

Scaling Digital Certificates

• How can this possibly scale?  Surely Gavin can’t sign 
everyone’s public key!


• Approach #1: Introduce hierarchy via delegation

• { “Michael V. Drake's public key is 0x... and I trust her to vouch for UC” }K -1Gavin

• { “Carol Christ’s public key is 0x... and I trust her to vouch for UCB” }K -1Mike

• { “John Canny's public key is 0x... and I trust him to vouch for EECS” }K -1Carol

• { “Nick Weaver's public key is 0x...” }K -1John

 19



Computer Science 161 Fall 2020 Nicholas Weaver

Scaling Digital Certificates, con’t

• Nick puts this last on his web page

• (or shoves it under your door)


• Anyone who can gather the intermediary keys can validate the 
chain

• They can get these (other than Gavin’s) from anywhere because they can validate 

them, too

• In fact, I may as well just include those certs as well, just to make sure you don't gave 

to go search for them


• Approach #2: have multiple trusted parties who are in the 
business of signing certs …

• (The certs might also be hierarchical, per Approach #1)
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Certificate Authorities

• CAs are trusted parties in a Public Key Infrastructure (PKI)

• They can operate offline

• They sign (“cut”) certs when convenient, not on-the-fly (… though see 

below ...)


• Suppose Alice wants to communicate confidentially w/ Bob:

• Bob gets a CA to issue {Bob’s public key is B} K -1CA

• Alice gets Bob’s cert any old way

• Alice uses her known value of KCA to verify cert’s signature

• Alice extracts B, sends {M}KB to Bob
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Bob

b

CA

B

Is this 
really 
Bob?

{Bob: B}K-1
CA
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Bob

b
B

Alice

Mi

{Bob: B}K-1
CA

I’d like to 
talk privately 
with Bob
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Bob

b
B

Alice

Mi

{Bob: B}K-1
CA

Does CA’s 
signature on 
B validate?

Mi

Ci = E(Mi, B)
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Bob

b*

CA

B*

Is this 
really 
Bob?

Mallory

X
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Bob

CA

Is this 
really 
Mal?

{Mal: B*}K-1
CA

b*

Mallory

B*
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BobAlice

Mi

{Mal: B*}K-1
CA

b*

B*

Mallory

I’d like to 
talk privately 
with Bob
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BobAlice

Mi

{Mal: B*}K-1
CA

Wait, I want 
to talk to Bob, 
not Mallory!

b*

B*

Mallory

X



Computer Science 161 Fall 2020 Nicholas Weaver

Revocation

• What do we do if a CA screws up and issues a cert in Bob’s 
name to Mallory?
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BobAlice

Mi

{Bob: B*}K-1
CA

b*

B*

Mallory

I’d like to 
talk privately 
with Bob

{Bob: B*}K-1
CA
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Revocation

• What do we do if a CA screws up and issues a cert in Bob’s name 
to Mallory?

• E.g. Verisign issued a Microsoft.com cert to a Random Joe

• (Related problem: Bob realizes b has been stolen)


• How do we recover from the error? 
• Approach #1: expiration dates

• Mitigates possible damage

• But adds management burden

• Benign failures to renew will 

break normal operation

• LetsEncrypt decided to make this VERY short 

to force continual updating
 31

{Bob: B,  
Exp: 3/31/21}K-1CA
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Revocation, con’t

• Approach #2: announce revoked certs

• Users periodically download cert revocation list (CRL)
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BobAlice

b*

B*

Mallory

Time for my 
weekly revoked 
cert download

CA

Revoked 
Certs  
…
{Bob: B*}K-1

CA

…CRL = Certificate 
Revocation List
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BobAlice

b*

B*

Mallory

Oof!

CA

Revoked 
Certs  
…
{Bob: B*}K-1

CA

…

CRL = Certificate 
Revocation List
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Revocation, con’t

• Approach #2: announce revoked certs

• Users periodically download cert revocation list (CRL)


• Issues?

• Lists can get large

• Need to authenticate the list itself – how?

 35
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BobAlice

b*

B*

Mallory

Time for my 
weekly revoked 
cert download

CA

Revoked 
Certs  
…
{Bob: B*}K-1

CA

…CRL = Certificate 
Revocation List

K-1
CA
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Revocation, con’t

• Approach #2: announce revoked certs

• Users periodically download cert revocation list (CRL)


• Issues?

• Lists can get large

• Need to authenticate the list itself – how?  Sign it!

• Mallory can exploit download lag

• What does Alice do if can’t reach CA for  

download?

• Assume all certs are invalid (fail-safe defaults)

• Wow, what an unhappy failure mode!


• Use old list: widens exploitation window 
if Mallory can “DoS” CA  (DoS = denial-of-service)
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Biggest Problem is Often 
Complexity
• The X509 "standard" for certificates is incredibly 

complicated

• Why?  Because it tried to do everything...


• If you want your eyes to bleed...

• https://tools.ietf.org/html/rfc5280


•

 38

https://tools.ietf.org/html/rfc5280


Computer Science 161 Fall 2020 Nicholas Weaver

The (Failed) Alternative: 
The “Web Of Trust”
• Alice signs Bob’s Key

• Bob Sign’s Carol’s


• So now if Dave has Alice’s key, Dave can believe Bob’s key 
and Carol’s key…


• Eventually you get a graph/web of trust…


• PGP started out with this model

• You would even have PGP key signing parties

• But it proved to be a disaster: 

Trusting central authorities can make these problems so much simpler!
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The Facebook Problem: 
Applied Cryptography in Action
• Facebook Messenger now has an encrypted chat option

• Limited to their phone application


• The cryptography in general is very good

• Used a well regarded asynchronous messenger library (from Signal) with many good 

properties, including forward secrecy


• When Alice wants to send a message to Bob

• Queries for Bob's public key from Facebook's server

• Encrypts message and send it to Facebook

• Facebook then forwards the message to Bob


• Both Alice and Bob are using encrypted and authenticated channels 
to Facebook

 40



Computer Science 161 Fall 2020 Nicholas Weaver

Facebook's Unique Messenger 
Problem: Abuse
• Much of Facebook's biggest problem is dealing with abuse...

• What if either Alice or Bob is a stalker, an a-hole, or otherwise problematic?

• Aside: A huge amount of abuse is explicitly gender based, so I'm going to use "Alex" as the 

abuser and "Bailey" as the victim through the rest of this example


• Facebook would expect the other side to complain

• And then perhaps Facebook would kick off the perpetrator for violating Facebook's 

Terms of Service


• But fake abuse complaints are also a problem

• So can't just take them on face value


• And abusers might also want to release info publicly

• Want sender to be able to deny to the public but not to Facebook

 41
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Facebook's Problem 
Quantified
• Unless Bailey forwards the unencrypted message to 

Facebook

• Facebook must not be able to see the contents of the message


• If Bailey does forward the unencrypted message to Facebook

• Facebook must ensure that the message is what Alex sent to Bailey


• Nobody but Facebook should be able to verify this: 
No public signatures!

• Critical to prevent abusive release of messages to the public being verifiable: 

Messages are deniable for everybody but Facebook

 42



Computer Science 161 Fall 2020 Nicholas Weaver

The Protocol 
In Action

 43

Alex Bailey

What Is Bailey's Public 
Key?
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Aside: Key Transparency...

• Both Alex and Bailey are trusting Facebook's honesty...

• What if Facebook gave Alex a different key for Bailey?  How would he know?


• Facebook messenger has a nearly hidden option which allows 
Alex to see Bailey's key

• If they ever get together, they can manually verify that Facebook was honest by looking 

at a series of "safety numbers" or QR code


• The mantra of central key servers: Trust but Verify

• The simple option is enough to force honesty, as each attempt to lie has some 

probability of being caught


• This is the biggest weakness of Apple iMessage:

• iMessage has (fairly) good cryptography but there is no way to verify Apple's honesty

 44
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The Protocol 
In Action

 45

Alex Bailey

{message=E(Kpub_b, 
  M={"Hey Bailey, my zipper has  
     a problem, see photo",  
     krand}),
 mac=HMAC(krand, M),
 to=Bailey}

{message=E(Kpub_b, 
  M={"Hey Bailey, my zipper has  
     a problem, see photo",  
     krand}),
 mac=HMAC(krand, M),
 to=Bailey,
 from=Alex,
 time=now,
 fbmac=HMAC(Kfb,{mac, from,
                 to, time})}
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Some Notes

• Facebook can not read the message or even verify Alex's HMAC

• As the key for the HMAC is in the message itself


• Only Facebook knows their HMAC key

• And its the only information Facebook needs to retain in this protocol: 

Everything else can be discarded


• Bailey upon receipt checks that Alex's HMAC is correct

• Otherwise Bailey's messenger silently rejects the message

• Forces Alex's messenger to be honest about the HMAC, even thought Facebook never verified it


• Bailey trusts Facebook when Facebook says the message is from Alex

• Bailey does not verify a signature, because there is no signature to verify… 

But the Signal protocol uses an ephemeral key agreement so that implicitly verifies Alex as 
well
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Now To 
Report Abuse

 47

Alex Bailey

{Abuse{ 
  M={"Hey Bailey, my zipper has  
     a problem, see photo",  
     krand}},
 mac=HMAC(krand, M),
 to=Bailey,
 from=Alex,
 time=now,
 fbmac=HMAC(Kfb,{mac, from,
                 to, time})}
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Facebook's Verification

• First verify that Bailey correctly reported the message sent

• Verify fbmac=HMAC(Kfb,{mac,from,to,time}) 
• Only Facebook can do this verification since they keep Kfb secret


• This enables Facebook to confirm that this is the message that it relayed from Alex to 
Bailey


• Then verify that Bailey didn't tamper with the message

• Verify mac=HMAC(krand,{M, krand})


• Now Facebook knows this was sent from Alex to Bailey and can 
act accordingly

• But Bailey can't prove that Alex sent this message to anyone other than Facebook

• And Bailey can't tamper with the message because the HMAC is also a hash
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Snake Oil Cryptography: 
Craptography
• "Snake Oil" refers to 19th century 

fraudulent "cures"

• Promises to cure practically every ailment

• Sold because there was no regulation and  

no way for the buyers to know


• The security field is practically full of Snake Oil Security 
and Snake Oil Cryptography


• https://www.schneier.com/crypto-gram/archives/1999/0215.html#snakeoil
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Anti-Snake Oil: 
NSA's CNSA cryptographic suite
• Successor to "Suite B"

• Unclassified algorithms approved for Top Secret:

• There is nothing higher than TS, you have "compartments" but those are access control modifiers

• https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm


• Symmetric key, AES: 256b keys

• Hashing, SHA-384

• RSA/Diffie Helman: >= 3072b keys

• ECDHE/ECDSA: 384b keys over curve P-384


• In an ideal world, I'd only use those parameters, 

• But a lot of "strong" commercial is 128b AES, SHA-256, 2048b RSA/DH, 256b elliptic curves, 

plus the DJB curves and cyphers (ChaCha20)

• NSA has a requirement where a Top Secret communication captured today should not be 

decryptable by an adversary 40 years from now!
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Snake Oil Warning 
Signs...
• Amazingly long key lengths

• The NSA is super paranoid, and even they don't use >256b keys for symmetric key or >4096b for 

RSA/DH public key

• So if a system claims super long keys, be suspicious


• New algorithms and crazy protocols

• There is no reason to use a novel block cipher, hash, public key algorithm, or protocol

• Even a "post quantum" public key algorithm should not be used alone: 

Combine it with a conventional public key algorithm

• Anyone who roles their own is asking for trouble!

• EG, Telegram

• "It's like someone who had never seen cake but heard it described tried to bake one.  

With thumbtacks and iron filings."  Matthew D Green

• "Exactly! GLaDOS-cake encryption.  

Odd ingredients; strange recipe; probably not tasty; may explode oven. :)" Alyssa Rowan
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Snake Oil Warning

Signs...
• "One Time Pads"

• One time pads are secure, if you actually have a true one time pad

• But almost all the snake oil advertising it as a "one time pad" isn't!

• Instead, they are invariably some wacky stream cypher


• Gobbledygook, new math, and "chaos"

• Kinda obvious, but such things are never a good sign


• Rigged "cracking contests"

• Usually "decrypt this message" with no context and no structure

• Almost invariably a single or a few unknown plaintexts with nothing else

• Telegram, I'm looking at you here!
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A Recent Example: Crown-Sterling's "Time-AI 
crypto and breaking RSA" talk @ Blackhat
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So They Double-Down
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Nick Brings The FIRE!
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Lots in the Cryptocurrency Space…

• The biggest being IOTA (aka IdiOTA), a “internet of Things” 
cryptocurrency…

• That doesn’t use public key signatures, instead a hash based scheme that 

means you can never reuse a key…

• And results in 10kB+ signatures!  (Compared with RSA which is <450B, and those are big)

• That has created their own hash function…

• That was quickly broken!

• That is supposed to end up distributed…

• But relies entirely on their central authority

• That uses trinary math!?! 

• Somehow claiming it is going to be better, but you need entirely new processors…
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Unusability: 
No Public Keys
• The APCO Project 25 radio protocol

• Supports encryption on each traffic group

• But each traffic group uses a single shared key


• All fine and good if you set everything up at once...

• You just load the same key into all the radios

• But this totally fails in practice: what happens when you need to coordinate with 

somebody else who doesn't have the same keys?


• Made worse by bad user interface and users who think 
rekeying frequently is a good idea

• If your crypto is good, you shouldn't need to change your crypto keys


• "Why (Special Agent) Johnny (Still) Can't Encrypt

• http://www.crypto.com/blog/p25
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Unusability: 
PGP
• I hate Pretty Good Privacy

• But not because of the cryptography...


• The PGP cryptography is decent...

• Except it lacks "Forward Secrecy":  

If I can get someone's private key I can decrypt all their old messages


• The metadata is awful...

• By default, PGP says who every message is from and to

• It makes it much faster to decrypt


• It is hard to hide metadata well, but its easy to do things better than what PGP does


• It is never transparent

• Even with a "good" client like GPG-tools on the Mac

• And I don't have a client on my cellphone
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Unusability: 
How do you find someone's PGP key?
• Go to their personal website?

• Check their personal email?

• Ask them to mail it to you

• In an unencrypted channel?


• Check on the MIT keyserver?

• And get the old key that was mistakenly uploaded and can never be removed?
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Unusability: 
openssl libcrypto and libssl
• OpenSSL is a nightmare...

• A gazillion different little functions needed to do 

anything


• So much of a nightmare that I'm not 
going to bother learning it to teach you 
how bad it is

• This is why the old python-based project didn't give 

this raw


• But just to give you an idea: 
The command line OpenSSL utility 
options:
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And On To Linked Lists Blockchains

And CryptoCurrencies
• “Blockchain Technology”

• A fancy word for “Append-Only Data Structure”

• That causes people’s eyes to glaze over and them to throw money at people


• “Private/Permissioned Blockchain”:

• A setup where only one or a limited number of systems are authorized to append to the log

• AKA 20 year old, well known techniques


• “Public/Permissionless Blockchain”:

• Anybody can participate as appenders so there is supposedly no central authority: 

Difficulty comes in removing “sibyls”


• Cryptocurrencies

• Things that don’t actually work as currencies… 

More on Tuesday...
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Hash Chains

• If a data structure includes a hash of the previous block of 
data: This forms a “hash chain”


• So rather than the hash of a block validating just the 
block: 
The inclusion of the previous block’s hash validates all the 
previous blocks


• This also makes it easy to add blocks to data structures

• Only need to hash block + hash of previous block, rather than rehash 

everything: 
How you can efficiently hash an "append only" datastructure


• Now just validate the head (e.g. with signatures) and voila!

• All a “blockchain” is is a renamed hashchain! 

Linked timestamping services used this structure and were proposed back 
in 1990!
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Block N
H(Block N-1)

lots of other data

Block N - 1  
H(Block N-2)

lots of other data

Block N - 2  
H(Block N-3)

lots of other data



Computer Science 161 Fall 2020 Nicholas Weaver

Merkle Trees

• Lets say you have a lot of elements

• And you want to add or modify elements


• And you want to make the hash of the set 
easy to update


• Enter hash trees/merkle trees

• Elements 0, 1, 2, 3, 4, 5...

• H(0), H(1), H(2)...

• H(H(0) + H(1)), H(H(2)+H(3))...

• The final hash is the root of the top of the tree.


• And so on until you get to the root

• Allows you to add an element and update lg(n) hashes 

Rather than having to rehash all the data

• Patented in 1979!!
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Image Stolen from Wikipedia
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A Trivial Private Blockchain…

• We have a single server s, with keys Kpub and Kpriv…

• And a git archive g… (in which we fix git to use SHA-256)


• Whenever we issue a pull request…

• The server validates that the pull request meets the allowed criteria

• Accepts the pull request

• Signs the head…


• And that is it!

• Git is an append only data structure, and by signing the new head, we have the server 

authenticating the entire archive!


• This is why “private” blockchain is not a revolution!!!

• Anything that would benefit from an append-only, limited writer database already has one!
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