
Computer Science 161 Fall 2019 Weaver

Applied Crypto: 
Passwords & Signal & Tor

 1

Computer Science 161 Fall 2019 Weaver

Administrivia: 
Exam Logistics
• https://cs161.org/exam

• READ IT: This is just the tl;dr summary

• And do Homework 3 now... 

At least the part about the exam logistics!

• Scope is everything up to and including this lecture

• Basic concept

• You have arbitrary hand-written paper notes

• You can compose them on a tablet with a stylus interface but you need to print them out

• You do the exam on your computer from a pre-distributed encrypted PDF

• Proctoring is through your phone/second device over Zoom

• Possible of a "Trust but verify" quick oral quiz afterwards

• Explain how to solve a variant of a question you successfully solved on the exam

 2

https://cs161.org/exam

Computer Science 161 Fall 2019 Weaver

Why this structure?

• We need to do what we can to ensure academic honesty

• We also have hidden techniques we are using as well

• If I told all of you "The exam is unproctored and we have no mechanism to detect,

respond, or validate that you don't cheat"...

• I would be personally insulted and a total failure if 100% of you DIDN'T CHEAT!

• I want my students to be rational, and under those conditions it would be irrational not to

cheat

• At the same time, there is a non-linear relationship between
effectiveness and burden

• I doubt the aggressive CS162-style starring on reddit 17 page protocol is

significantly better at dissuading dishonesty
 3

Computer Science 161 Fall 2019 Weaver

Concerns about student privacy

• You will be notified in advance of which TA will be proctoring you

• For any reason you can switch proctors if you reach out in advance

• You can join using your SID rather than your name

• Plus zoom on phone sucks for looking at other people's rooms

• If you are not comfortable with this setup, reach out for arranging
off-line recording

• If you temporarily lose connectivity, don't worry

• Focus on the exam, not your Internet connection

• If you need to get up and go to the bathroom, stretch, etc... 
Go ahead

 4

Computer Science 161 Fall 2019 Weaver

Reminder: 
Cryptographic Hashes...
• We love ourselves some cryptographic hashes

• SHA_256, SHA_384, SHA3_256, SHA3_384

• Reminder on the properties:

• Irreversible: 

Given H(X), it is infeasible to find X short of simply trying all possibilities

• First preimage resistant: 

Given H(X), it is infeasible to find any X' such that H(X) = H(X')

• Second preimage resistant: 

It is infeasible to find X and Y such that X != Y and H(X) = H(Y)

 5

Computer Science 161 Fall 2019 Weaver

A Couple Other Hash Properties...

• They accept arbitrarily large inputs

• They "look" random

• Change a single bit on the input and each output bit has a 50% chance of

flipping

• And until you change the input, you can't predict which output bits are going

to change

• The ones we talked about are fast

• Can operate at many many MB/s: 

Faster at processing data than block ciphers

 6

Computer Science 161 Fall 2019 Weaver

A Hash Problem: 
Proof of work...
• Alice wants Bob to waste a bunch of CPU resources

• But wants to quickly check that Bob wasted that much CPU

• Alice -> Bob: "Here is a message M and a factor x"

• Make sure M has a nonce in it

• Now Bob needs to provide M' such that it starts with M and
H(M') starts with x zero bits

• Alice computes H(M') and verifies that it starts with x zero bits

• Alice now knows that Bob is expected to have had to create 2x separate M's and

hash them until he found one that matched

 7

Computer Science 161 Fall 2019 Weaver

What this provides

• You can use it in a protocol where the user has to waste something...

• EG, proposals for sending mail as a way of reducing spam

• It wouldn't: Bad guys can get lots of CPU resources

• Have other options too

• CAPTCHAs:

• Those "prove your human" web puzzles: 

It is a proof you wasted a few seconds of a human's time 
(Or that you paid $.01 to waste a few seconds of a human's time)

• Proof of wait

• Alice has a secret key k

• Alice to Bob sends "Don't contact me until time T, here is HMAC(k,T)"

• When Bob gets back, he says "T, HMAC(k,T)"

• Alice then verifies T is in the past and HMAC(k,T)

 8

Computer Science 161 Fall 2019 Weaver

Passwords

• The password problem:

• User Alice authenticates herself with a password P

• How does the site verify later that Alice knows P?

• Classic:

• Just store {Alice, P} in a file...

• But what happens when the site is hacked?

• The attacker now knows Alice's password!

• Enter "Password Hashing"
 9

Computer Science 161 Fall 2019 Weaver

Password Hashing

• Instead of storing {Alice, P}...

• Store {Alice, H(P)}

• To verify Alice, when she presents P

• Compute H(P) and compare it with the stored value

• Problem: Brute Force tables...

• Most people chose bad passwords... 

And these passwords are known

• Bad guy has a huge file...

• H(P1), P1 

H(P2), P2 
H(P3), P3...

• Ways to make this more efficient ("Rainbow Tables")
 10

Computer Science 161 Fall 2019 Weaver

A Sprinkle of Salt...

• Instead of storing {Alice, H(P)}, also have a user-specific string,
the "Salt"

• Now store {Alice, Salt, H(P||Salt)}

• The salt ideally should be both long and random, but it isn't considered "secret": 

rather it is a nonce

• As long as the salt is unique...

• An attacker who captures the password file has to brute force Alice's password on its

own

• Its still an "off-line attack" (Attacker can do all the computation he
wants) but...

• At least the attacker can't precompute possible solutions

 11

Computer Science 161 Fall 2019 Weaver

Slower Hashes...

• Most cryptographic hashes are designed to be fast

• After all, that is the point: they should not only turn H(🐮) to hamburger... 

they need to do it quickly

• But for password hashes, we want it to be slow!

• Its OK if it takes a good fraction of a second to check a password

• Since you only need to do it once for each legitimate usage of that password

• But the attacker needs to do it for each password he wants to try

• Slower hashes don't change the asymptotic difficulty of
password cracking but can have huge practical impact

• Slow rate by a factor of 10,000 or more!
 12

Computer Science 161 Fall 2019 Weaver

PBKDF2

• "Password Based Key Derivation
Function 2"

• Designed to produce a long "random" bitstream 

derived from the password

• Used for both a password hash and to
generate keys derived from a user's
password

• PBKDF(PRF, P, S, c, len):

• PRF == Pseudo Random Function  

(e.g. HMAC-SHA256)

• P == Password

• S == Salt

• c == Iteration count

• len == Number of bits/bytes requested

• DK == Derived Key

 13

PBKDF(PRF,P,S,c,len){
 DK = ""
 for i = 1,range(len/blocksize)+1){
 DK = DK || F(PRF,P,S,c,i)
 }
 return DK[0:len]
}

F(PRF,P,S,c,i){
 UR = U = PRF(P, S||INT_32(i))
 for j = 2; j <= c; ++j {
 U = PRF(P, U)
 UR = UR ^ U
 }
 return UR
}

Computer Science 161 Fall 2019 Weaver

Comments on PBKDF2

• Allows you to get effectively an arbitrary long string from a
password

• Assuming the user's password is strong/high entropy

• Very good for getting a bunch of symmetric keys from a
single password

• You can also use this to seed a pRNG for generating a "random" public/
private key pair

• Designed to be slow in computation...

• But it does not require a lot of memory: 

Other functions are also expensive in memory as well, e.g. scrypt & argon2
 14

Computer Science 161 Fall 2019 Weaver

Passwords...

• If an attacker can do an offline attack, your password must be
really good

• Attacker simply tries a huge number of passwords in parallel using a GPU-based

computer: buy a bunch of used Nvidia 2080 supers from all those upgrading to 3080s

• So you need a high entropy password:

• Even xkcd-style is only 10b/word with a 1000 word dictionary, so need a 7 or more random word

passphrase to resist a determined attacker

• Life is far better is if the attacker can only do 
online attacks:

• Query the device and see if it works

• Now limited to a few tries per second and 

no parallelism!
 15

Computer Science 161 Fall 2019 Weaver

... and iPhones

• Apple's security philosophy:

• In your hands, the phone should be everything

• In anybody else's, it should (ideally) be an inert "brick"

• Apple uses a small co-processor in the phone to handle the cryptography

• The "Secure Enclave"

• The rest of the phone is untrusted

• Notably the memory: All data must be encrypted: 

The CPU requests that the Secure Enclave unencrypt data and some data (e.g., your credit card
for ApplePay) is only readable by the Secure Enclave

• They also have an ability to effectively erase a small piece of memory

• "Effaceable Storage": this takes a good amount of EE trickery

 16

Computer Science 161 Fall 2019 Weaver

Crypto and the iPhone Filesystem

• A lot of keys encrypted by keys...

• But there is a random master key, kphone, that is the root of all the other keys

• Need to store kphone encrypted by the user's password in the flash memory

• PBKDF2(P,...) = kuser

• But how to prevent an off-line brute-force attack?

• Also have a 256b random secret burned into the Secure Enclave that you can use for encryption

• Need to take apart the chip to get this!

• Even the secure enclave can't read this secret, only use this secret as a key for hardware cryptographic engines

• Now the user key is not just a function of P, but E(Ksecret, P)

• Without the secret, can not do an offline attack

• All online attacks have to go through the secure enclave

• After 5 tries, starts to slow down

• After 10 tries, can (optionally) nuke kphone!

• Erase just that part of memory -> effectively erases the entire phone!

• Even compromising the secure enclave limits guessing to 10 per second!

 17

Computer Science 161 Fall 2019 Weaver

Backups...

• Of course there is a necessary weakness:

• Backing up the phone copies all the data off in a form not encrypted using the in-chip

secret

• After all, you need to be able to recover it onto a new phone!

• So someone who can get your phone...  
And can somehow managed to have it unlocked

• Thief, abusive boyfriend, cop...

• Hold it up to your face (iPhone X) or Fingerprint (5s or beyond)

• And then sync it with a new computer

• Change of policy for iOS-11:

• Now you also need to put in the passcode to trust a new computer: 

Can't create a backup without knowing the passcode
 18

Computer Science 161 Fall 2019 Weaver

Signal and Tor

• Signal is a messenger protocol and implementation

• Signal (the company) is a 501(c)3 nonprofit

• The protocol is also used by WhatsApp, Facebook Messenger, etc...

• Tor is an anonymity tool

• Designed to provide anonymous but real-time network connectivity in the face of an

aggressive but local adversary

• Common (bad) information security advice is "Use Signal, Use
Tor"

• In reality, Signal is a great protocol, but some security compromises are annoying in

the implementation, so for most, WhatsApp is about as good

• While Tor is often not just a placebo but poison!

 19

Computer Science 161 Fall 2019 Weaver

End-To-End Messengers

• We love end to end cryptographic protocols...

• After all, we just saw why we might want them

• We love forward secrecy...

• After all, we want things to stay secret even if our keys are compromised

• Forward secrecy is "easy" for online protocols

• Just make sure to do a DHE/ECDHE key exchange, and throw away the session key

when done

• Forward secrecy is much more annoying for an offline protocol

• Alice wants to share data with Bob, but Bob is not online

• Like in project 2...

• Or any messenger system!

 20

Computer Science 161 Fall 2019 Weaver

Signal Requirements For Key Agreement

• Three parties: Alice, Bob, and a messenger server

• The messenger server is like the file store in project 2, an untrusted entity

• A separate mechanism is used to provide key transparency

• Bob is offline:

• He has prearranged data stored on the messenger server

• Alice and Bob want to create an ephemeral (DH) key...

• To use for then encrypting messages

• They need mutual authentication

• Assuming Alice and Bob have the correct public keys, only Alice and Bob could have agreed on a key

• They also need deniability

• Alice or Bob can't create a record proving the other side participated in creating the key: 

So no "Alice just signs her DH..." design
 21

Computer Science 161 Fall 2019 Weaver

Extended Triple Diffie-Hellman

• Key idea:

• Lets use multiple Diffie-Hellman exchanges combined into one

• Some to perform mutual authentication

• Some to generate an ephemeral key

• Shove them ALL into a hash-based key derivation function

• They use elliptic curves, but the design would be the same for
conventional DH, so we will use the former

• We will use DH(A,B) as DH(ga,gb) where we know a but not b. 

(So A is our private value, B is someone else's public value)

• Also have Sign(K,M) for signing and KDF(KM) which derives a bunch of session keys

for a hash-based key derivation function (e.g. PBKDF2 with only a couple iterations)

 22

Computer Science 161 Fall 2019 Weaver

Lots of Keys!

• All keys have both a public & private component

• Private components always stay with Alice and Bob

• Anything broadcast is always the public component

• Alice:

• IKA: Alice's identity key: for both DH and signatures

• EKA: Alice's ephemeral key: Created randomly just to talk to Bob.

• Bob:

• IKB: Bob's identity key, long lived

• SPKB: Bob's signed rekey, rotates ~weekly/monthly

• Has corresponding signature Sign(IKb, SPKb)

• OPKB: Bob's one time use keys (One Time Prekey)

• Can run out, but designed to increase security when available

 23

Computer Science 161 Fall 2019 Weaver

Before We Start: 
Bob to Server, Server to Alice
• Bob uploads:

• IKB, SPKB, Sign(IKB, SPKB), {OPKB1, OPKB2, OPKB3 ...}

• Now when Alice wants to talk to Bob...

• Gets from the server:

• IKB, SPKB, Sign(IKB, SPKB), OPKB?

• Told which OPK it is or "There are no OPKs left"

• OPKs are designed to prevent replay attacks: 

Bob will never allow any particular OPK to be used twice

• This is now the input into Alice's DH calculations
 24

Computer Science 161 Fall 2019 Weaver

Alice now does a lot of DH...

• DH1 = DK(IKA, SPKB)
• Acts as authentication for Alice when Bob does the same

• DH2 = DK(EKA, IKB)
• Forces Bob to do mutual authentication

• DH3 = DK(EKA, SPKB)
• Adds in ephemeral EKA to short lived SPKB

• DH4 = DK(EKA, OPKB)
• Adds in one-time used OPKB, if available

• SK = HKDF(DH1 || DH2 || DH3 || DH4)
• Skip DH4 if no one time pre-keys are available

• Now discard the private part of EKA and the intermediate DH calculations
 25

Computer Science 161 Fall 2019 Weaver

Now Alice Sends To Bob

• IKA, EKA, which OPK used (if any), and  
E(SK, M, IKA || IKB)

• Using an AEAD encryption mode: 
Authenticated Encryption with Additional Data modes allow additional
data to be protected by the MAC but sent in the clear: 
In this case IKA and IKB

• Bob can do the same DH calculations to generate SK

• Since Bob knows the private keys corresponding to the public values Alice

used

• If it fails to verify the AEAD data abort

 26

Computer Science 161 Fall 2019 Weaver

Key Transparency

• For now, Alice and Bob are trusting the server to report IKA and IKB
correctly

• If the server lies, "

• Fortunately there is an answer: 
If Alice and Bob are ever together:

• One person's phone displays H(IKA || IKB) as a QR Code

• Other person's phone verifies that it is the same

• Plus the voice channel...

• Display "Two Words" on screen: 

F(H(IKA || IKB || SK))
• Assumption is a MitM attacker can't fake a voice conversation quickly enough, so if each

person says one of the words...
 27

Computer Science 161 Fall 2019 Weaver

Considerations

• Authentication requires the out-of-channel methods

• Otherwise no guarantees

• Replay attacks

• Only if no OPK is available: Can be potentially bad

• Deniability

• No cryptographic proofs available as to the sender/receiver!

 28

Computer Science 161 Fall 2019 Weaver

And Then Ratchets...

• A "ratchet" is a one-way function for message keys

• Ratchet(Ki) -> Ki+1, MKi

• But can't take Ki+1 and MKi to find Ki

• A symmetric key ratchet is easy

• We've seen these already: 

Any secure PRNG with rollback resistance is a ratchet

• Can do it slightly more efficiently with HMAC: 

HMAC(Ki, 0x01) -> MKi 
HMAC(Ki, 0x02) -> Ki+1

• Its OK to keep around the intermediate session keys

• Thanks to HMAC we can't go backwards with them anyway: 

Needed for out of order messages
 29

Computer Science 161 Fall 2019 Weaver

Signal adds in DH ratchets too...

• So for a few messages in a chain you use a symmetric key
ratchet...

• You gain forward secrecy by discarding the old internal state

• But occasionally you rekey with an additional DH

• Used to add into the ratchet internal state: update Ki to H(Ki-1 || DH)

• Acts to reset everything with even more randomness

• So even if you compromise Bob's device at time T and steal all the keys...

• You can't decrypt old messages that aren't on Bob's device: 

can't run the symmetric ratchet backwards

• You can't decrypt subsequent messages once Bob & Alice use a DH ratchet

 30

Computer Science 161 Fall 2019 Weaver

The Protocol is Great...

BUT!
• The app itself does some ehh thing in the usability/security

tradeoff...

• No mechanism to back-up messages! 

If your phone is toast, your messages are gone!

• No mechanism to migrate to a new phone! 

If you upgrade to a new phone, your messages are gone!

• Auto-notifies all those where you are in their contacts that they join

• This is where WhatsApp has a huge competitive advantage

• They allow backup of messages, message migration etc...

 31

Computer Science 161 Fall 2019 Weaver

Tor: The Onion Router 
Anonymous Websurfing
• Tor actually encompasses many different components

• The Tor network:

• Provides a means for anonymous Internet connections with low(ish) latency by relaying connections

through multiple Onion Router systems

• The Tor Browser bundle:

• A copy of FireFox extended release with privacy optimizations, configured to only use the Tor network

• Tor Hidden Services:

• Services only reachable though the Tor network

• Tor bridges with pluggable transports:

• Systems to reach the Tor network using encapsulation to evade censorship

• Tor provides three separate capabilities in one package:

• Client anonymity, censorship resistance, server anonymity

 32

Computer Science 161 Fall 2019 Weaver

The Tor Threat Model: 
Anonymity of content against local adversaries
• The goal is to enable users to connect to other systems

“anonymously” but with low latency

• The remote system should have no way of knowing the IP address originating traffic

• The local network should have no way of knowing the remote IP address the local

user is contacting

• Important what is excluded:  
The global adversary

• Tor does not even attempt to counter  

someone who can see all network traffic: 
It is probably impossible to do so and be low latency & 
efficient

 33

Computer Science 161 Fall 2019 Weaver

The High Level Approach: 
Onion Routing
• The Tor network consists of thousands of independent Tor nodes, or

“Onion Routers”

• Each node has a distinct public key and communicates with other nodes over TLS connections

• A Tor circuit encrypts the data in a series of layers

• Each hop away from the client removes a layer of encryption

• Each hop towards the client adds a layer of encryption

• During circuit establishment, the client establishes a session key with the
first hop…

• And then with the second hop through the first hop

• The client has a global view of the Tor Network: 
The directory servers provide a list of all Tor relays and their public keys

 34

Computer Science 161 Fall 2019 Weaver

Tor Routing 
In Action

 35

Computer Science 161 Fall 2019 Weaver

Tor Routing 
In Action

 36

Computer Science 161 Fall 2019 Weaver

Creating the Circuit Layers…

• The client starts out by using an authenticated DHE key exchange with the
first node…

• OR1 creates ga, signs it with its private key, sends ga, Sign(Kpriv_or1, ga) to client 

Client creates gb, sends it to OR1 
Client does Verify(Kpub_or1, ga)

• Creating a session key KOR1 as H(gab)

• This first hop is commonly referred to as the “guard node”

• It then tells OR1 to extend this circuit to OR2

• Through that, creating a session key for the client to talk to OR2 that OR1 does not know

• And OR2 doesn't know what the client is, just that it is somebody talking to OR1 requesting to

extend the connection...

• It then tells OR2 to extend to OR3…

• And OR1 won’t know where the client is extending the circuit to, only OR2 will

 37

Computer Science 161 Fall 2019 Weaver

Unwrapping the Onion

• Now the client sends some data…

• E(Kor1,E(Kor2,E(Kor3, Data)))

• OR1 decrypts it and passes on to OR2

• E(Kor2, E(Kor3, Data))

• OR2 then passes it on…

• Generally go through at least 3 hops…

• Why 3? So that OR1 can’t call up OR2 and link everything trivially

• Messages are a fixed-sized payload
 38

Computer Science 161 Fall 2019 Weaver

The Tor Browser…

• Surfing “anonymously” doesn’t simply depend on hiding your
connection…

• But also configuring the browser to make sure it resists
tracking

• No persistent cookies or other data stores

• No deviations from other people running the same browser

• Anonymity only works in a crowd…

• So it really tries to make it all the same

• But by default it makes it easy to say “this person is using Tor”
 39

Computer Science 161 Fall 2019 Weaver

But You Are Relying 
On Honest Exit Nodes…
• The exit node, where your

traffic goes to the general
Internet, is a man-in-the-
middle…

• Who can see and modify all non-
encrypted traffic

• The exit node also does the DNS
lookups

• Exit nodes have not
always been honest…

 40

Computer Science 161 Fall 2019 Weaver

Anonymity Invites Abuse…

(Stolen from Penny Arcade)

 41

Computer Science 161 Fall 2019 Weaver

This Makes Using Tor Browser 
Painful…

 42

Computer Science 161 Fall 2019 Weaver

And Also Makes 
Running Exit Nodes Painful…
• If you want to receive abuse complaints…

• Run a Tor Exit Node

• Assuming your ISP even allows it…

• Since they don’t like complaints either

• Serves as a large limit on Tor in practice:

• Internal bandwidth is plentiful, but exit node bandwidth is restricted

• Know a colleague who ran an exit node for research...

• And got a visit from the FBI!

 43

Computer Science 161 Fall 2019 Weaver

One Example of Abuse: 
The Harvard Bomb Threat…
• On December 16th, 2013, a Harvard student didn’t want to take his

final in “Politics of American Education”…

• So he emailed a bomb threat using Guerrilla Mail

• But he was “smart” and used Tor and Tor Browser to access Guerrilla Mail

• Proved easy to track

• “Hmm, this bomb threat was sent through Tor…”

• “So who was using Tor on the Harvard campus…” (look in Netflow logs..)

• “So who is this person…” (look in authentication logs)

• “Hey FBI agent, wanna go knock on this guy’s door?!”

• There is no magic Operational Security (OPSEC) sauce…

• And again, anonymity only works if there is a crowd

 44

Computer Science 161 Fall 2019 Weaver

Censorship Resistance: 
Pluggable Transports
• Tor is really used by separate communities

• Anonymity types who want anonymity in their communication

• Censorship-resistant types who want to communicate despite government action

• The price for "free" censorship evasion is that your traffic acts to hide other anonymous users

• Vanilla Tor fails the latter completely

• So there is a framework to deploy bridges that encapsulate Tor

over some other protocol

• So if you are in a hostile network...

• Lots of these, e.g. OBS3 (Obfuscating Protocol 3), OBS4, Meek...

• But its an arm's race

 45

