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Applied Crypto: 
Passwords & Signal & Tor
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Administrivia: 
Exam Logistics
• https://cs161.org/exam

• READ IT:  This is just the tl;dr summary

• And do Homework 3 now... 

At least the part about the exam logistics!

• Scope is everything up to and including this lecture


• Basic concept

• You have arbitrary hand-written paper notes

• You can compose them on a tablet with a stylus interface but you need to print them out


• You do the exam on your computer from a pre-distributed encrypted PDF

• Proctoring is through your phone/second device over Zoom

• Possible of a "Trust but verify" quick oral quiz afterwards

• Explain how to solve a variant of a question you successfully solved on the exam
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Why this structure?

• We need to do what we can to ensure academic honesty

• We also have hidden techniques we are using as well

• If I told all of you "The exam is unproctored and we have no mechanism to detect, 

respond, or validate that you don't cheat"...

• I would be personally insulted and a total failure if 100% of you DIDN'T CHEAT!

• I want my students to be rational, and under those conditions it would be irrational not to 

cheat


• At the same time, there is a non-linear relationship between 
effectiveness and burden

• I doubt the aggressive CS162-style starring on reddit 17 page protocol is 

significantly better at dissuading dishonesty
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Concerns about student privacy

• You will be notified in advance of which TA will be proctoring you

• For any reason you can switch proctors if you reach out in advance


• You can join using your SID rather than your name

• Plus zoom on phone sucks for looking at other people's rooms


• If you are not comfortable with this setup, reach out for arranging 
off-line recording


• If you temporarily lose connectivity, don't worry

• Focus on the exam, not your Internet connection


• If you need to get up and go to the bathroom, stretch, etc... 
Go ahead
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Reminder: 
Cryptographic Hashes...
• We love ourselves some cryptographic hashes

• SHA_256, SHA_384, SHA3_256, SHA3_384


• Reminder on the properties:

• Irreversible: 

Given H(X), it is infeasible to find X short of simply trying all possibilities

• First preimage resistant: 

Given H(X), it is infeasible to find any X' such that H(X) = H(X')

• Second preimage resistant: 

It is infeasible to find X and Y such that X != Y and H(X) = H(Y)
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A Couple Other Hash Properties...

• They accept arbitrarily large inputs

• They "look" random

• Change a single bit on the input and each output bit has a 50% chance of 

flipping

• And until you change the input, you can't predict which output bits are going 

to change


• The ones we talked about are fast

• Can operate at many many MB/s: 

Faster at processing data than block ciphers
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A Hash Problem: 
Proof of work...
• Alice wants Bob to waste a bunch of CPU resources

• But wants to quickly check that Bob wasted that much CPU


• Alice -> Bob: "Here is a message M and a factor x"

• Make sure M has a nonce in it


• Now Bob needs to provide M' such that it starts with M and 
H(M') starts with x zero bits


• Alice computes H(M') and verifies that it starts with x zero bits

• Alice now knows that Bob is expected to have had to create 2x separate M's and 

hash them until he found one that matched
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What this provides

• You can use it in a protocol where the user has to waste something...

• EG, proposals for sending mail as a way of reducing spam

• It wouldn't: Bad guys can get lots of CPU resources


• Have other options too

• CAPTCHAs:

• Those "prove your human" web puzzles: 

It is a proof you wasted a few seconds of a human's time 
(Or that you paid $.01 to waste a few seconds of a human's time)


• Proof of wait

• Alice has a secret key k

• Alice to Bob sends "Don't contact me until time T, here is HMAC(k,T)"

• When Bob gets back, he says "T, HMAC(k,T)"

• Alice then verifies T is in the past and HMAC(k,T)
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Passwords

• The password problem:

• User Alice authenticates herself with a password P


• How does the site verify later that Alice knows P?

• Classic:

• Just store {Alice, P} in a file...


• But what happens when the site is hacked?

• The attacker now knows Alice's password!


• Enter "Password Hashing"
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Password Hashing

• Instead of storing {Alice, P}...

• Store {Alice, H(P)}


• To verify Alice, when she presents P

• Compute H(P) and compare it with the stored value


• Problem: Brute Force tables...

• Most people chose bad passwords... 

And these passwords are known

• Bad guy has a huge file...

• H(P1), P1 

H(P2), P2 
H(P3), P3...


• Ways to make this more efficient ("Rainbow Tables")
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A Sprinkle of Salt...

• Instead of storing {Alice, H(P)}, also have a user-specific string, 
the "Salt"

• Now store {Alice, Salt, H(P||Salt)}

• The salt ideally should be both long and random, but it isn't considered "secret": 

rather it is a nonce


• As long as the salt is unique...

• An attacker who captures the password file has to brute force Alice's password on its 

own


• Its still an "off-line attack" (Attacker can do all the computation he 
wants) but...

• At least the attacker can't precompute possible solutions
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Slower Hashes...

• Most cryptographic hashes are designed to be fast

• After all, that is the point: they should not only turn H(🐮) to hamburger... 

they need to do it quickly


• But for password hashes, we want it to be slow!

• Its OK if it takes a good fraction of a second to check a password

• Since you only need to do it once for each legitimate usage of that password

• But the attacker needs to do it for each password he wants to try


• Slower hashes don't change the asymptotic difficulty of 
password cracking but can have huge practical impact


• Slow rate by a factor of 10,000 or more!
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PBKDF2

• "Password Based Key Derivation 
Function 2"

• Designed to produce a long "random" bitstream 

derived from the password


• Used for both a password hash and to 
generate keys derived from a user's 
password

• PBKDF(PRF, P, S, c, len):

• PRF == Pseudo Random Function  

(e.g. HMAC-SHA256)

• P == Password

• S == Salt

• c == Iteration count

• len == Number of bits/bytes requested

• DK == Derived Key
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PBKDF(PRF,P,S,c,len){ 
  DK = "" 
  for i = 1,range(len/blocksize)+1){ 
    DK = DK || F(PRF,P,S,c,i) 
  } 
  return DK[0:len] 
} 

F(PRF,P,S,c,i){ 
  UR = U = PRF(P, S||INT_32(i)) 
  for j = 2; j <= c; ++j { 
    U = PRF(P, U) 
    UR = UR ^ U 
  } 
  return UR 
}
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Comments on PBKDF2

• Allows you to get effectively an arbitrary long string from a 
password


• Assuming the user's password is strong/high entropy


• Very good for getting a bunch of symmetric keys from a 
single password


• You can also use this to seed a pRNG for generating a "random" public/
private key pair


• Designed to be slow in computation...

• But it does not require a lot of memory: 

Other functions are also expensive in memory as well, e.g. scrypt & argon2
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Passwords...

• If an attacker can do an offline attack, your password must be 
really good

• Attacker simply tries a huge number of passwords in parallel using a GPU-based 

computer: buy a bunch of used Nvidia 2080 supers from all those upgrading to 3080s

• So you need a high entropy password:

• Even xkcd-style is only 10b/word with a 1000 word dictionary, so need a 7 or more random word 

passphrase to resist a determined attacker


• Life is far better is if the attacker can only do 
online attacks:

• Query the device and see if it works

• Now limited to a few tries per second and 

no parallelism!
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... and iPhones

• Apple's security philosophy:

• In your hands, the phone should be everything

• In anybody else's, it should (ideally) be an inert "brick"


• Apple uses a small co-processor in the phone to handle the cryptography

• The "Secure Enclave"


• The rest of the phone is untrusted

• Notably the memory:  All data must be encrypted: 

The CPU requests that the Secure Enclave unencrypt data and some data (e.g., your credit card 
for ApplePay) is only readable by the Secure Enclave


• They also have an ability to effectively erase a small piece of memory

• "Effaceable Storage": this takes a good amount of EE trickery

 16



Computer Science 161 Fall 2019 Weaver

Crypto and the iPhone Filesystem

• A lot of keys encrypted by keys...

• But there is a random master key, kphone, that is the root of all the other keys


• Need to store kphone encrypted by the user's password in the flash memory

• PBKDF2(P,...) = kuser


• But how to prevent an off-line brute-force attack?

• Also have a 256b random secret burned into the Secure Enclave that you can use for encryption


• Need to take apart the chip to get this!

• Even the secure enclave can't read this secret, only use this secret as a key for hardware cryptographic engines


• Now the user key is not just a function of P, but E(Ksecret, P)

• Without the secret, can not do an offline attack


• All online attacks have to go through the secure enclave

• After 5 tries, starts to slow down

• After 10 tries, can (optionally) nuke kphone!


• Erase just that part of memory -> effectively erases the entire phone!

• Even compromising the secure enclave limits guessing to 10 per second!
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Backups...

• Of course there is a necessary weakness:

• Backing up the phone copies all the data off in a form not encrypted using the in-chip 

secret

• After all, you need to be able to recover it onto a new phone!


• So someone who can get your phone...   
And can somehow managed to have it unlocked

• Thief, abusive boyfriend, cop...

• Hold it up to your face (iPhone X) or Fingerprint (5s or beyond)

• And then sync it with a new computer


• Change of policy for iOS-11:

• Now you also need to put in the passcode to trust a new computer: 

Can't create a backup without knowing the passcode
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Signal and Tor

• Signal is a messenger protocol and implementation

• Signal (the company) is a 501(c)3 nonprofit

• The protocol is also used by WhatsApp, Facebook Messenger, etc...


• Tor is an anonymity tool

• Designed to provide anonymous but real-time network connectivity in the face of an 

aggressive but local adversary


• Common (bad) information security advice is "Use Signal, Use 
Tor"

• In reality, Signal is a great protocol, but some security compromises are annoying in 

the implementation, so for most, WhatsApp is about as good

• While Tor is often not just a placebo but poison!
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End-To-End Messengers

• We love end to end cryptographic protocols...

• After all, we just saw why we might want them


• We love forward secrecy...

• After all, we want things to stay secret even if our keys are compromised


• Forward secrecy is "easy" for online protocols

• Just make sure to do a DHE/ECDHE key exchange, and throw away the session key 

when done


• Forward secrecy is much more annoying for an offline protocol

• Alice wants to share data with Bob, but Bob is not online

• Like in project 2...

• Or any messenger system!
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Signal Requirements For Key Agreement

• Three parties: Alice, Bob, and a messenger server

• The messenger server is like the file store in project 2, an untrusted entity

• A separate mechanism is used to provide key transparency


• Bob is offline:

• He has prearranged data stored on the messenger server


• Alice and Bob want to create an ephemeral (DH) key...

• To use for then encrypting messages


• They need mutual authentication

• Assuming Alice and Bob have the correct public keys, only Alice and Bob could have agreed on a key


• They also need deniability

• Alice or Bob can't create a record proving the other side participated in creating the key: 

So no "Alice just signs her DH..." design
 21
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Extended Triple Diffie-Hellman

• Key idea:

• Lets use multiple Diffie-Hellman exchanges combined into one

• Some to perform mutual authentication

• Some to generate an ephemeral key

• Shove them ALL into a hash-based key derivation function


• They use elliptic curves, but the design would be the same for 
conventional DH, so we will use the former

• We will use DH(A,B) as DH(ga,gb) where we know a but not b. 

(So A is our private value, B is someone else's public value)

• Also have Sign(K,M) for signing and KDF(KM) which derives a bunch of session keys 

for a hash-based key derivation function (e.g. PBKDF2 with only a couple iterations)

 22



Computer Science 161 Fall 2019 Weaver

Lots of Keys!

• All keys have both a public & private component

• Private components always stay with Alice and Bob

• Anything broadcast is always the public component


• Alice:

• IKA: Alice's identity key: for both DH and signatures

• EKA: Alice's ephemeral key: Created randomly just to talk to Bob.


• Bob:

• IKB: Bob's identity key, long lived

• SPKB: Bob's signed rekey, rotates ~weekly/monthly

• Has corresponding signature Sign(IKb, SPKb)


• OPKB: Bob's one time use keys (One Time Prekey)

• Can run out, but designed to increase security when available
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Before We Start: 
Bob to Server, Server to Alice
• Bob uploads:

• IKB, SPKB, Sign(IKB, SPKB), {OPKB1, OPKB2, OPKB3 ...}


• Now when Alice wants to talk to Bob...

• Gets from the server:

• IKB, SPKB, Sign(IKB, SPKB), OPKB?

• Told which OPK it is or "There are no OPKs left"

• OPKs are designed to prevent replay attacks: 

Bob will never allow any particular OPK to be used twice


• This is now the input into Alice's DH calculations
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Alice now does a lot of DH...

• DH1 = DK(IKA, SPKB) 
• Acts as authentication for Alice when Bob does the same


• DH2 = DK(EKA, IKB) 
• Forces Bob to do mutual authentication


• DH3 = DK(EKA, SPKB) 
• Adds in ephemeral EKA to short lived SPKB


• DH4 = DK(EKA, OPKB) 
• Adds in one-time used OPKB, if available


• SK = HKDF(DH1 || DH2 || DH3 || DH4) 
• Skip DH4 if no one time pre-keys are available


• Now discard the private part of EKA and the intermediate DH calculations
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Now Alice Sends To Bob

• IKA, EKA, which OPK used (if any), and  
E(SK, M, IKA || IKB) 

• Using an AEAD encryption mode: 
Authenticated Encryption with Additional Data modes allow additional 
data to be protected by the MAC but sent in the clear: 
In this case IKA and IKB


• Bob can do the same DH calculations to generate SK

• Since Bob knows the private keys corresponding to the public values Alice 

used

• If it fails to verify the AEAD data abort
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Key Transparency

• For now, Alice and Bob are trusting the server to report IKA and IKB 
correctly

• If the server lies, "


• Fortunately there is an answer: 
If Alice and Bob are ever together:

• One person's phone displays H(IKA || IKB) as a QR Code

• Other person's phone verifies that it is the same


• Plus the voice channel...

• Display "Two Words" on screen: 

F(H(IKA || IKB || SK)) 
• Assumption is a MitM attacker can't fake a voice conversation quickly enough, so if each 

person says one of the words...
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Considerations

• Authentication requires the out-of-channel methods

• Otherwise no guarantees


• Replay attacks

• Only if no OPK is available: Can be potentially bad


• Deniability

• No cryptographic proofs available as to the sender/receiver!
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And Then Ratchets...

• A "ratchet" is a one-way function for message keys

• Ratchet(Ki) -> Ki+1, MKi

• But can't take Ki+1 and MKi to find Ki


• A symmetric key ratchet is easy

• We've seen these already: 

Any secure PRNG with rollback resistance is a ratchet

• Can do it slightly more efficiently with HMAC: 

HMAC(Ki, 0x01) -> MKi 
HMAC(Ki, 0x02) -> Ki+1


• Its OK to keep around the intermediate session keys

• Thanks to HMAC we can't go backwards with them anyway: 

Needed for out of order messages
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Signal adds in DH ratchets too...

• So for a few messages in a chain you use a symmetric key 
ratchet...


• You gain forward secrecy by discarding the old internal state


• But occasionally you rekey with an additional DH

• Used to add into the ratchet internal state: update Ki to H(Ki-1 || DH)


• Acts to reset everything with even more randomness

• So even if you compromise Bob's device at time T and steal all the keys...

• You can't decrypt old messages that aren't on Bob's device: 

can't run the symmetric ratchet backwards

• You can't decrypt subsequent messages once Bob & Alice use a DH ratchet
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The Protocol is Great...

BUT!
• The app itself does some ehh thing in the usability/security 

tradeoff...

• No mechanism to back-up messages! 

If your phone is toast, your messages are gone!

• No mechanism to migrate to a new phone! 

If you upgrade to a new phone, your messages are gone!

• Auto-notifies all those where you are in their contacts that they join 

• This is where WhatsApp has a huge competitive advantage

• They allow backup of messages, message migration etc...
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Tor: The Onion Router 
Anonymous Websurfing
• Tor actually encompasses many different components

• The Tor network:

• Provides a means for anonymous Internet connections with low(ish) latency by relaying connections 

through multiple Onion Router systems 


• The Tor Browser bundle:

• A copy of FireFox extended release with privacy optimizations, configured to only use the Tor network


• Tor Hidden Services:

• Services only reachable though the Tor network


• Tor bridges with pluggable transports:

• Systems to reach the Tor network using encapsulation to evade censorship


• Tor provides three separate capabilities in one package:

• Client anonymity, censorship resistance, server anonymity
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The Tor Threat Model: 
Anonymity of content against local adversaries
• The goal is to enable users to connect to other systems 

“anonymously” but with low latency

• The remote system should have no way of knowing the IP address originating traffic

• The local network should have no way of knowing the remote IP address the local 

user is contacting


• Important what is excluded:  
The global adversary

• Tor does not even attempt to counter  

someone who can see all network traffic: 
It is probably impossible to do so and be low latency & 
efficient
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The High Level Approach: 
Onion Routing
• The Tor network consists of thousands of independent Tor nodes, or 

“Onion Routers”

• Each node has a distinct public key and communicates with other nodes over TLS connections


• A Tor circuit encrypts the data in a series of layers

• Each hop away from the client removes a layer of encryption

• Each hop towards the client adds a layer of encryption


• During circuit establishment, the client establishes a session key with the 
first hop…

• And then with the second hop through the first hop


• The client has a global view of the Tor Network: 
The directory servers provide a list of all Tor relays and their public keys
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Tor Routing 
In Action

 35



Computer Science 161 Fall 2019 Weaver

Tor Routing 
In Action

 36



Computer Science 161 Fall 2019 Weaver

Creating the Circuit Layers…

• The client starts out by using an authenticated DHE key exchange with the 
first node…

• OR1 creates ga, signs it with its private key, sends ga, Sign(Kpriv_or1, ga) to client 

Client creates gb, sends it to OR1 
Client does Verify(Kpub_or1, ga)


• Creating a session key KOR1 as H(gab)

• This first hop is commonly referred to as the “guard node”


• It then tells OR1 to extend this circuit to OR2

• Through that, creating a session key for the client to talk to OR2 that OR1 does not know

• And OR2 doesn't know what the client is, just that it is somebody talking to OR1 requesting to 

extend the connection...


• It then tells OR2 to extend to OR3…

• And OR1 won’t know where the client is extending the circuit to, only OR2 will
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Unwrapping the Onion

• Now the client sends some data…

• E(Kor1,E(Kor2,E(Kor3, Data)))


• OR1 decrypts it and passes on to OR2

• E(Kor2, E(Kor3, Data))


• OR2 then passes it on…

• Generally go through at least 3 hops…

• Why 3?  So that OR1 can’t call up OR2 and link everything trivially


• Messages are a fixed-sized payload
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The Tor Browser…

• Surfing “anonymously” doesn’t simply depend on hiding your 
connection…


• But also configuring the browser to make sure it resists 
tracking

• No persistent cookies or other data stores

• No deviations from other people running the same browser


• Anonymity only works in a crowd…

• So it really tries to make it all the same


• But by default it makes it easy to say “this person is using Tor”
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But You Are Relying 
On Honest Exit Nodes…
• The exit node, where your 

traffic goes to the general 
Internet, is a man-in-the-
middle…


• Who can see and modify all non-
encrypted traffic


• The exit node also does the DNS 
lookups


• Exit nodes have not 
always been honest…
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Anonymity Invites Abuse…

(Stolen from Penny Arcade)

 41
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This Makes Using Tor Browser 
Painful…
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And Also Makes 
Running Exit Nodes Painful…
• If you want to receive abuse complaints…

• Run a Tor Exit Node


• Assuming your ISP even allows it…

• Since they don’t like complaints either


• Serves as a large limit on Tor in practice:

• Internal bandwidth is plentiful, but exit node bandwidth is restricted


• Know a colleague who ran an exit node for research...

• And got a visit from the FBI!
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One Example of Abuse: 
The Harvard Bomb Threat…
• On December 16th, 2013, a Harvard student didn’t want to take his 

final in “Politics of American Education”…

• So he emailed a bomb threat using Guerrilla Mail

• But he was “smart” and used Tor and Tor Browser to access Guerrilla Mail


• Proved easy to track

• “Hmm, this bomb threat was sent through Tor…”

• “So who was using Tor on the Harvard campus…” (look in Netflow logs..)

• “So who is this person…” (look in authentication logs)

• “Hey FBI agent, wanna go knock on this guy’s door?!”


• There is no magic Operational Security (OPSEC) sauce…

• And again, anonymity only works if there is a crowd
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Censorship Resistance: 
Pluggable Transports
• Tor is really used by separate communities

• Anonymity types who want anonymity in their communication

• Censorship-resistant types who want to communicate despite government action

• The price for "free" censorship evasion is that your traffic acts to hide other anonymous users


• Vanilla Tor fails the latter completely

• So there is a framework to deploy bridges that encapsulate Tor 

over some other protocol

• So if you are in a hostile network...

• Lots of these, e.g. OBS3 (Obfuscating Protocol 3), OBS4, Meek...

• But its an arm's race
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