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The Net Part 4: IP, TCP, TLS
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Spot the Zero Day: 
TPLink Miniature Wireless Router
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Spot the Zero Forever Day: 
TPLink Miniature Wireless Router
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Announcements

• Going to delay in-person experiment by 1 week...

• I've yet to get building access approved, but I did inspect the locations...

• Plus, yeah, election week


• How is project 2 going?
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IP Packet Structure
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IP Packet Structure
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Specifies the length of the entire IP 
packet: bytes in this header plus 
bytes in the Payload
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IP Packet Structure
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Options (if any)

Payload

Specifies how to interpret the start 
of the Payload, which is the 
header of a Transport Protocol 
such as TCP or UDP
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IP Packet Structure
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IP Packet Structure
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IP Packet Header (Continued)

• Two IP addresses

• Source IP address (32 bits)

• Destination IP address (32 bits)


• Destination address

• Unique identifier/locator for the receiving host

• Allows each node to make forwarding decisions


• Source address

• Unique identifier/locator for the sending host

• Recipient can decide whether to accept packet

• Enables recipient to send a reply back to source


• Checksum is arithmetic, not CRC...

• To allow easily modification of the packet by the network

11



Computer Science 161 Fall 2020 Weaver

IP: “Best Effort ” Packet Delivery

• Routers inspect destination address, locate “next hop” in 
forwarding table


• Address = ~unique identifier/locator for the receiving host


• Only provides a “I’ll give it a try” delivery service:

• Packets may be lost

• Packets may be corrupted (but that is 'assume drop' based on layer 2 error detection)

• Packets may be delivered out of order

12
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IP network
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IP Routing: 
Autonomous Systems
• Your system sends IP packets to the gateway...

• But what happens after that?


• Within a given network its routed internally

• Identified by its ASN (Autonomous System Number)


• But the key is the Internet is a network-of-networks

• Each "autonomous system" (AS) handles its own internal routing

• The AS knows the next AS to forward a packet to


• Primary protocol for communicating in between ASs is BGP:

• Each router announces what networks it can provide and the path onward

• Most precise route with the shortest path and no loops preferred

13
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Packet Routing on the Internet: 
Border Gateway Protocol & Routing Tables

14
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IP Spoofing 
And Autonomous Systems
• The edge-AS where a user connects should restrict packet 

spoofing

• Sending a packet with a different sender IP address


• But about 25% of them don't...

• So a system can simply lie and say it comes from someplace else


• This enables blind-spoofing attacks

• Such as the Kaminski attack on DNS


• It also enables "reflected DOS attacks"

15
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On-path Injection vs Off-path Spoofing
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Lying in BGP

17
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“Best Effort” is Lame!  What to do?

• It’s the job of our Transport (layer 4) protocols to build data 
delivery services that our apps need out of IP’s modest 
layer-3 service


• #1 workhorse: TCP (Transmission Control Protocol)

• Service provided by TCP:

• Connection oriented (explicit set-up / tear-down)

• End hosts (processes) can have multiple concurrent long-lived communication


• Reliable, in-order, byte-stream delivery 
• Robust detection & retransmission of lost data

18
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TCP “Bytestream” Service
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Bidirectional communication:
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There are two separate bytestreams, one in 
each direction
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TCP

21
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TCP
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Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

These plus IP addresses define 
a given connection 
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gateway

resolver
router

172.217.6.78

The Rest of 
the Internet

4. Connect to google.com server

216.97.19.13
2

Suppose our browser used port 23144 for our connection, 
and Google’s server used 443.

 


Then our connection will be fully specified by the single tuple 
<216.97.19.132, 23144, 172.217.6.78, 443,TCP>
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TCP
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Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used to order data in the 
connection:  client program 
receives data in order

Sequence number assigned to start 
of byte stream is picked when 
connection begins; doesn’t start at 0
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TCP

25

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used to say how much data 
has been received

Acknowledgment 
gives seq # just 
beyond highest seq. 
received in order. 

If sender successfully 
sends N bytestream 
bytes starting at seq S 
then “ack” for that will 
be S+N.
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Sequence Numbers
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Host A

Host B

TCP Data

TCP Data

TCP  
HDR

TCP  
HDR

ISN (initial sequence number)

Sequence number 
from A = 1st byte 

of data

ACK sequence 
number from B = 
next expected 

byte
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TCP

27

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags have different meaning: 
 
SYN: Synchronize, 
used to initiate a connection


ACK: Acknowledge,

used to indicate 
acknowledgement of data


FIN: Finish,

used to indicate no more data 
will be sent (but can still receive 
and acknowledge data)


RST: Reset,

used to terminate the 
connection completely
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TCP Conn. Setup & Data Exchange

28

Client (initiator) 
IP address 1.2.1.2, port 3344

Server 
IP address 9.8.7.6, port 80

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80, SYN, Seq = x

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=3344, SYN+ACK, Seq = y, Ack = x+1

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80, ACK, Seq = x+1, Ack = y+1SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80,

ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html

SrcA=9.8.7.6, SrcP=80, DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16, Data=“200 OK … <html> …”
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Abrupt Termination

• A sends a TCP packet with RESET (RST) flag to B

• E.g., because app. process on A crashed

• (Could instead be that B sends a RST to A)


• Assuming that the sequence numbers in the RST fit with what B expects, That’s It:

• B’s user-level process receives: ECONNRESET

• No further communication on connection is possible

29
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Disruption

• Normally, TCP finishes (“closes”) a connection by each side sending a 
FIN control message 

– Reliably delivered, since other side must ack


• But: if a TCP endpoint finds unable to continue (process dies; info 
from other “peer” is inconsistent), it abruptly terminates by sending a 
RST control message 

– Unilateral 
– Takes effect immediately (no ack needed) 
– Only accepted by peer if has correct* sequence number

30
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TCP Threat: Data Injection

• If attacker knows ports & sequence numbers (e.g., on-path attacker), attacker can inject data into 
any TCP connection

• Receiver B is none the wiser!


• Termed TCP connection hijacking (or “session hijacking”)

• A general means to take over an already-established connection!


• We are toast if an attacker can see our TCP traffic!

• Because then they immediately know the port & sequence numbers

31
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TCP Data Injection

32

Client (initiator) 
IP address 1.2.1.2, port 3344

Server 
IP address 9.8.7.6, port 80

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80,

ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html

...

Attacker (AirPwn, QUANTUM, etc) 
IP address 6.6.6.6, port N/A

SrcA=9.8.7.6, SrcP=80, 
DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16

Data=“200 OK … <poison> …”

Client 
dutifully 

processes 
as server’s 
response
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TCP Data Injection

33

Client (initiator) 
IP address 1.2.1.2, port 3344

Server 
IP address 9.8.7.6, port 80

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80,

ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html

...

Attacker 
IP address 6.6.6.6, port N/A

SrcA=9.8.7.6, SrcP=80, 
DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16

Data=“200 OK … <poison> …”Client ignores since already 

processed that part of 
bytestream: the network 
can duplicate packets 

so only pay attention to 
the first version in sequence

SrcA=9.8.7.6, SrcP=80, DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16, Data=“200 OK … <html> …”
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TCP Threat: Disruption

aka RST injection
• The attacker can also inject RST packets instead of 

payloads

• TCP clients must respect RST packets and stop all communication

• Because its a real world error recovery mechanism

• So "just ignore RSTs don't work"


• Who uses this?

• China:  The Great Firewall does this to TCP requests

• A long time ago: Comcast, to block BitTorrent uploads

• Some intrusion detection systems: To hopefully mitigate an attack in progress

34
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TCP Threat: Blind Hijacking

• Is it possible for an off-path attacker to inject into a TCP 
connection even if they can’t see our traffic?


• YES: if somehow they can infer or guess the port and 
sequence numbers

35
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TCP Threat: Blind Spoofing

• Is it possible for an off-path attacker to create a fake TCP 
connection, even if they can’t see responses?


• YES: if somehow they can infer or guess the TCP initial 
sequence numbers


• Why would an attacker want to do this?

• Perhaps to leverage a server’s trust of a given client as identified by its IP 

address

• Perhaps to frame a given client so the attacker’s actions during the 

connections can’t be traced back to the attacker

36
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Blind Spoofing on TCP Handshake

37

Alleged Client (not actual) 
IP address 1.2.1.2, port N/A

Server 
IP address 9.8.7.6, port 80

Blind Attacker
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6, 

DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = z+1

Attacker’s goal:
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6, 
DstP=80, ACK, Seq = z+1, ACK = y+1

SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6, 
DstP=80, ACK, Seq = z+1, ACK = y+1, Data 

= “GET /transfer-money.html”
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Blind Spoofing on TCP Handshake

38

Alleged Client (not actual) 
IP address 1.2.1.2, port NA

Server 
IP address 9.8.7.6, port 80

Blind Attacker
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6, 

DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = x+1

Small Note #1: if alleged client receives this, will 
be confused ⇒ send a RST back to server … 
… So attacker may need to hurry! 
But firewalls may inadvertently stop this reply to 
the alleged client so it never sends the RST 🤔
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Blind Spoofing on TCP Handshake

39

Alleged Client (not actual) 
IP address 1.2.1.2, port NA

Server 
IP address 9.8.7.6, port 80

Blind Attacker
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6, 

DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = z+1

Big Note #2: attacker doesn’t 
get to see this packet!
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Blind Spoofing on TCP Handshake

40

Alleged Client (not actual) 
IP address 1.2.1.2, port N/A

Server 
IP address 9.8.7.6, port 80

Blind Attacker
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6, 

DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = z+1

So how can the attacker 
figure out what value of y 
to use for their ACK?

SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6, 
DstP=80, ACK, Seq = z+1, ACK = y+1

SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6, 
DstP=80, ACK, Seq = z+1, ACK = y+1, Data 

= “GET /transfer-money.html”
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Reminder: Establishing a TCP Connection

41

SYN

SYN+ACK

ACK

A B

Data
Data

Each host tells its Initial 
Sequence Number 

(ISN) to the other host.

(Spec says to pick based on 
local clock)

Hmm, any way 
for the attacker 
to know this?

Sure – make a non-spoofed 
connection first, and see what 

server used for ISN y then!

How Do We Fix This?

Use a (Pseudo)-Random 
ISN
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Summary of TCP Security Issues

• An attacker who can observe your TCP connection can 
manipulate it:


• Forcefully terminate by forging a RST packet

• Inject (spoof) data into either direction by forging data packets

• Works because they can include in their spoofed traffic the correct sequence 

numbers (both directions) and TCP ports

• Remains a major threat today

42
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Summary of TCP Security Issues

• An attacker who can observe your TCP connection can manipulate it:

• Forcefully terminate by forging a RST packet

• Inject (spoof) data into either direction by forging data packets

• Works because they can include in their spoofed traffic the correct sequence numbers (both 

directions) and TCP ports

• Remains a major threat today


• If attacker could predict the ISN chosen by a server, could “blind spoof” a 
connection to the server

• Makes it appear that host ABC has connected, and has sent data of the attacker’s choosing, 

when in fact it hasn’t

• Undermines any security based on trusting ABC’s IP address

• Allows attacker to “frame” ABC or otherwise avoid detection

• Fixed (mostly) today by choosing random ISNs

43
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But wasn't fixed completely...

• CVE-2016-5696

• "Off-Path TCP Exploits: Global Rate Limit Considered Dangerous" Usenix Security 

2016  

• https://www.usenix.org/conference/usenixsecurity16/technical-sessions/

presentation/cao


• Key idea:

• RFC 5961 added some global rate limits that acted as an information leak:

• Could determine if two clients were communicating on a given port

• Could determine if you could correctly guess the sequence #s for this communication

• Required a third host to probe this and at the same time spoof packets


• Once you get the sequence #s, you can then inject arbitrary content into the TCP 
stream (d'oh)

44
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The SYN Flood DOS Attack...

• When a computer receives a TCP connection it decides to accept

• It is going to allocate a significant amount of state


• So just send lots of SYNs to a server...

• Each SYN that gets a SYN/ACK would allocate some state

• So do a lot of them

• And spoof the source IP


• Attack is a resource consumption DOS

• Goal is to cause the server to consume memory and CPU


• Requires that the attacker be able to spoof packets

• Otherwise would just rate-limit the attacker's IPs

45
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SYN-Flood Counter: 
SYN cookies
• Observation:  Attacker needs to see or guess the server's 

response to complete the handshake

• So don't allocate anything until you see the ACK... 

But how?


• Idea: Have our initial sequence not be random...

• But instead have it be pseudo-random


• So we create the SYN/ACK's ISN using the pseudo-random 
function


• And then check than the ACK correctly used the sequence number

46
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Easy SYN-cookies: 
HMAC
• On startup create a random key...

• For the server ISN:

• HMACk(SIP|DIP|SPORT|DPORT|client_ISN)


• Upon receipt of the ACK

• Verify that ACK is based off HMACk(SIP|DIP|SPORT|DPORT|client_ISN)


• Only then does the server allocate memory for the TCP 
connection


• HMAC is very useful for these sorts of constructions: 
Give a token to a client, verify that the client presents the token later

47
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Theme of The Rest Of This 
Lecture...

48
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But Trust Can Be Delegated…

49
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The Rest of Today's Lecture:

• Applying crypto technology in practice

• Two simple abstractions cover 80% of the use cases for 

crypto:

– “Sealed blob”: Data that is encrypted and authenticated under a 

particular key: Project 2

– Secure channel: Communication channel that can’t be eavesdropped 

on or tampered with

• Today: TLS (Transport Layer Security) – a secure channel

• In network parlance, this is an “application layer” protocol but…

• designed to have any application over it, so really “layer 4.5” is a better 

description: Its basically used as a security layer over TCP or (with dTLS) UDP
50
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Building Secure End-to-End Channels

• End-to-end = communication protections achieved all the 
way from originating client to intended server


• With no need to trust intermediaries


• Dealing with threats:

• Eavesdropping?

• Encryption (including session keys)

• Manipulation (injection, MITM)?

• Integrity (use of a MAC); replay protection

• Impersonation?

• Signatures

51

What’s missing?

Availability …( )
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Building A Secure End-to-End Channel: SSL/TLS

• SSL = Secure Sockets Layer (predecessor)

• TLS = Transport Layer Security (standard)

• Both terms used interchangeably


• Security for any application that uses TCP

• Secure = encryption/confidentiality + integrity + 

                authentication (of server, but not of client)


• Multiple uses

• Puts the ‘s’ in “https”

• Secures mail sent between servers (STARTTLS)

• Virtual Private Networks

52
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An “Insecure” Web Page

53
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A “Secure” Web Page

54

Lock Icon means: 

“Your communication between 
  your computer and the site  
  is encrypted and authenticated”
“Some other third party attests that 
  this site belongs to Amazon”
“These properties hold not just for the  
  main page, but any image or script is  
  also fetched from a site with attestation 
  and encryption”

People think lock icon means
“Hey, I can trust this site”  
(no matter where the lock icon 
itself actually appears).
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Basic idea

• Browser (client) picks some symmetric 
keys for encryption + authentication 


• Client sends them to server, encrypted 
using RSA public-key encryption


• Both sides send MACs

• Now they use these keys to encrypt 

and authenticate all subsequent 
messages, using symmetric-key 
crypto

55

EKA(keys)

MACk1(…)

MACk2(…)

Browser Amazon
Server

Ek3(message), MACk1(…)
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HTTPS Connection (SSL / TLS)

• Browser (client) connects via TCP to 
Amazon’s HTTPS server


• Client picks 256-bit random number RB, 
sends over list of crypto protocols it 
supports (Cypher suite negotiation)


• Server picks 256-bit random number RS, 
selects protocols to use for this session


• Server sends over its certificate

• (all of this is in the clear)


• Client now validates cert
56

SYN

SYN ACK

ACK

Browser Amazon
Server

Hello.  My rnd # = RB.  I support

(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or  …

My rnd # = RS.  Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~2-3 K
B of d

ata
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Cipher Suite 
Negotiation
• Firefox's cipher-suite information

• Client sends to the server

• Server then choses which one it wants

• It should pick the common mode that both 

prefer


• Its the bulk encryption modes 
only


• Then key exchanges w 
corresponding encryption mode

• Description is key exchange, signature (if 

necessary), and then bulk cipher & hash
57
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HTTPS Connection (SSL / TLS), cont.

• For RSA, browser constructs “Premaster 
Secret” PS


• Browser sends PS encrypted using 
Amazon’s public RSA key KAmazon


• Using PS, RB, and RS, browser & server 
derive symmetric cipher keys 
(CB, CS) & MAC integrity keys (IB, IS)

• One pair to use in each direction

• Done by seeding a pRNG in common between the 

browser and the server: 
Repeated calls to the pRNG then create the common 
keys
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HTTPS Connection (SSL / TLS), cont.

• For RSA, browser constructs “Premaster Secret” PS

• Browser sends PS encrypted using Amazon’s public RSA 

key KAmazon

• Using PS, RB, and RS, browser & server derive symm. 

cipher keys 
(CB, CS) & MAC integrity keys (IB, IS)

• One pair to use in each direction


• Browser & server exchange MACs computed over entire 
dialog so far


• If good MAC, Browser displays

• All subsequent communication encrypted w/ symmetric 

cipher (e.g., AES128) cipher keys, MACs

• Sequence #’s thwart replay attacks, RB and RS thwart replaying handshake
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Alternative: Ephemeral Key Exchange via  
Diffie-Hellman
• For Diffie-Hellman, server generates random a, 

sends public parameters and ga mod p

• Signed with server’s private key


• Browser verifies signature

• Browser generates random b, computes PS = 

gab mod p, sends gb mod p to server

• Server also computes 

PS = gab mod p

• Remainder is as before: from PS, RB, and RS, 

browser & server derive symm. cipher keys 
(CB, CS) and MAC integrity keys (IB, IS), etc…
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Why Rb and Rs?

• Both Rb and Rs act to affect the keys...  Why?

• Keys = F(Rb || Rs || PS)


• Needed to prevent a replay attack

• Attacker captures the handshake from either the client or server and replays 

it...


• If the other side choses a different R the next time...

• The replay attack fails.


• But you don't need to check for reuse by the other side..

• Just make sure you don't reuse it on your side!
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And Sabotaged pRNGs...

• Let us assume the server is using DHE...

• If an attacker can know a, they have all the information needed to decrypt the traffic:

• Since PS = gab, and can see gb.


• TLS spews a lot of "random" numbers publicly as well

• Nonces in the crypto, Rs, etc...


• If the server uses a bad pRNG which is both sabotaged and doesn't have 
rollback resistance...

• Dual_EC DRBG where you know the secret used to create the generator...

• ANSI X9.31: An AES based one with a secret key...


• Attacker sees the handshake, sees subsequent PRNG calls, works backwards to 
get the secret

• Attack of the week: DUHK

• https://blog.cryptographyengineering.com/2017/10/23/attack-of-the-week-duhk/
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“sslstrip”

(Amazon fixed this fairly recently)

63

Regular web surfing: http: URL

So no integrity - a MITM attacker 
can alter pages returned by server 
…

And when we click here …

… attacker has changed the corresponding link so that it’s ordinary 
http rather than https!


We never get a chance to use TLS’s protections! :-(
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Why Browser UI's have changed...

• It used to be you'd only see "secure" if a site was encrypted

• No signaling on unencrypted sites


• Recently browsers started flagging non-encrypted sites as 
"insecure"


• Encourage sites to not use the ssl-strip vulnerable anti-pattern
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Big Changes for TLS 1.3 
Diffie/Hellman and ECDHE only
• The RSA key exchange has a substantial vulnerability

• If the attacker is ever able to compromise the server and obtain its RSA key… 

the attacker can decrypt any traffic captured

• RSA lacks forward secrecy


• So TLS 1.3 uses DHE/ECDHE only

• Requires an attacker who steals the server's private keys to still be a MitM to decrypt data


• TLS 1.3 also speeds things up:

• In the client hello, the client includes {gb mod p} for preferred parameters

• If the server finds it suitable, the server returns {ga mod p}


• Saves a round-trip time


• Also only supports AEAD mode encryptions and limited ciphersuites (e.g. 
GCM)
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But What About that 
“Certificate Validation”
• Certificate validation is used to 

establish a chain of “trust”

• It actually is an attempt to build a 

scalable trust framework


• This is commonly known as a 
Public Key Infrastructure (PKI)


• Your browser is trusting the “Certificate 
Authority” to be responsible…
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Certificates

• Cert = signed statement about someone’s public key

• Note that a cert does not say anything about the identity of who gives you the cert

• It simply states a given public key KBob belongs to Bob …

• … and backs up this statement with a digital signature made using a different public/private key pair, say 

from Verisign (a “Certificate Authority”)


• Bob then can prove his identity to you by you sending him something 
encrypted with KBob …

• … which he then demonstrates he can read


• … or by signing something he demonstrably uses

• Works provided you trust that you have a valid copy of Verisign’s public 

key …

• … and you trust Verisign to use prudence when she signs other people’s keys
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Validating Amazon’s Identity

• Browser compares domain name in cert w/ URL

• Note: this provides an end-to-end property 

(as opposed to say a cert associated with an IP address)


• Browser accesses separate cert belonging to issuer

• These are hardwired into the browser – and trusted!

• There could be a chain of these …


• Browser applies issuer’s public key to verify signature S, obtaining the hash of 
what the issuer signed

• Compares with its own SHA-1 hash of Amazon’s cert


• Assuming hashes match, now have high confidence it’s indeed Amazon’s public 
key …

• assuming signatory is trustworthy, didn’t lose private key, wasn’t tricked into signing someone else’s 

certificate, and that Amazon didn’t lose their key either…
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End-to-End ⇒ Powerful Protections

• Attacker runs a sniffer to capture our WiFi session?

• But: encrypted communication is unreadable

• No problem!


• DNS cache poisoning?

• Client goes to wrong server

• But: detects impersonation

• No problem!


• Attacker hijacks our connection, injects new traffic

• But: data receiver rejects it due to failed integrity check since all communication has a mac on it

• No problem!


• Only thing a full man-in-the-middle attacker can do is inject RSTs, inject 
invalid packets, or drop packets: limited to a denial of service
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Validating Amazon’s Identity, cont.

• Browser retrieves cert belonging to the issuer

• These are hardwired into the browser – and trusted!


• But what if the browser can’t find a cert for the issuer?
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