
Computer Science 161 Fall 2020 Weaver

The Net Part 4: IP, TCP, TLS

1

Computer Science 161 Fall 2020 Weaver

Spot the Zero Day: 
TPLink Miniature Wireless Router

2

Computer Science 161 Fall 2020 Weaver

Spot the Zero Forever Day: 
TPLink Miniature Wireless Router

3

Computer Science 161 Fall 2020 Weaver

Announcements

• Going to delay in-person experiment by 1 week...

• I've yet to get building access approved, but I did inspect the locations...

• Plus, yeah, election week

• How is project 2 going?

4

Computer Science 161 Fall 2020 Weaver

IP Packet Structure

5

4-bit

Version

4-bit

Header

Length

8-bit

Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification 3-bit

Flags 13-bit Fragment Offset

8-bit Time to

Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Computer Science 161 Fall 2020 Weaver

IP Packet Structure

6

4-bit

Version

4-bit

Header

Length

8-bit

Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification 3-bit

Flags 13-bit Fragment Offset

8-bit Time to

Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Specifies the length of the entire IP
packet: bytes in this header plus
bytes in the Payload

Computer Science 161 Fall 2020 Weaver

IP Packet Structure

7

4-bit

Version

4-bit

Header

Length

8-bit

Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification 3-bit

Flags 13-bit Fragment Offset

8-bit Time to

Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Specifies how to interpret the start
of the Payload, which is the
header of a Transport Protocol
such as TCP or UDP

Computer Science 161 Fall 2020 Weaver

IP Packet Structure

8

4-bit

Version

4-bit

Header

Length

8-bit

Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification 3-bit

Flags 13-bit Fragment Offset

8-bit Time to

Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Computer Science 161 Fall 2020 Weaver

IP Packet Structure

9

4-bit

Version

4-bit

Header

Length

8-bit

Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification 3-bit

Flags 13-bit Fragment Offset

8-bit Time to

Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Computer Science 161 Fall 2020 Weaver

IP Packet Structure

10

4-bit

Version

4-bit

Header

Length

8-bit

Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification 3-bit

Flags 13-bit Fragment Offset

8-bit Time to

Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Computer Science 161 Fall 2020 Weaver

IP Packet Header (Continued)

• Two IP addresses

• Source IP address (32 bits)

• Destination IP address (32 bits)

• Destination address

• Unique identifier/locator for the receiving host

• Allows each node to make forwarding decisions

• Source address

• Unique identifier/locator for the sending host

• Recipient can decide whether to accept packet

• Enables recipient to send a reply back to source

• Checksum is arithmetic, not CRC...

• To allow easily modification of the packet by the network

11

Computer Science 161 Fall 2020 Weaver

IP: “Best Effort ” Packet Delivery

• Routers inspect destination address, locate “next hop” in
forwarding table

• Address = ~unique identifier/locator for the receiving host

• Only provides a “I’ll give it a try” delivery service:

• Packets may be lost

• Packets may be corrupted (but that is 'assume drop' based on layer 2 error detection)

• Packets may be delivered out of order

12

source destination

IP network

Computer Science 161 Fall 2020 Weaver

IP Routing: 
Autonomous Systems
• Your system sends IP packets to the gateway...

• But what happens after that?

• Within a given network its routed internally

• Identified by its ASN (Autonomous System Number)

• But the key is the Internet is a network-of-networks

• Each "autonomous system" (AS) handles its own internal routing

• The AS knows the next AS to forward a packet to

• Primary protocol for communicating in between ASs is BGP:

• Each router announces what networks it can provide and the path onward

• Most precise route with the shortest path and no loops preferred

13

Computer Science 161 Fall 2020 Weaver

Packet Routing on the Internet: 
Border Gateway Protocol & Routing Tables

14

AS
1

AS
2

AS
3

AS
4

AS
5

AS
6

Sender

Recipient

{Recipient}

{AS6->Recipient}

{AS6->Recipient}

{AS5->AS6->Recipient}

{AS4->AS6->Recipient}

{AS4->AS6->Recipient}

Computer Science 161 Fall 2020 Weaver

IP Spoofing 
And Autonomous Systems
• The edge-AS where a user connects should restrict packet

spoofing

• Sending a packet with a different sender IP address

• But about 25% of them don't...

• So a system can simply lie and say it comes from someplace else

• This enables blind-spoofing attacks

• Such as the Kaminski attack on DNS

• It also enables "reflected DOS attacks"

15

Computer Science 161 Fall 2020 Weaver

On-path Injection vs Off-path Spoofing

16

Host A

Host B
Host E

Host D

Host C

Router 1 Router 2
Router 3

Router 4

Router 5

Router 6 Router 7

Host A communicates with Host D

On-path

Off-path Off-path

Computer Science 161 Fall 2020 Weaver

Lying in BGP

17

AS
1

AS
2

AS
3

AS
4

AS
5

AS
6

Sender

Recipient

{AS6->Recipient}

{Recipient}

Computer Science 161 Fall 2020 Weaver

“Best Effort” is Lame! What to do?

• It’s the job of our Transport (layer 4) protocols to build data
delivery services that our apps need out of IP’s modest
layer-3 service

• #1 workhorse: TCP (Transmission Control Protocol)

• Service provided by TCP:

• Connection oriented (explicit set-up / tear-down)

• End hosts (processes) can have multiple concurrent long-lived communication

• Reliable, in-order, byte-stream delivery
• Robust detection & retransmission of lost data

18

Computer Science 161 Fall 2020 Weaver

TCP “Bytestream” Service

19

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Process A on host H1

Process B
on host H2

B
yte 80

B
yte 80

Processes don’t ever see packet boundaries,
lost or corrupted packets, retransmissions, etc.

Computer Science 161 Fall 2020 Weaver

Bidirectional communication:

20

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Process B on host H2

Process A
on host H1

B
yte 73

B
yte 73

There are two separate bytestreams, one in
each direction

Computer Science 161 Fall 2020 Weaver

TCP

21

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Computer Science 161 Fall 2020 Weaver

TCP

22

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

These plus IP addresses define
a given connection

Computer Science 161 Fall 2020 Weaver

23

gateway

resolver
router

172.217.6.78

The Rest of
the Internet

4. Connect to google.com server

216.97.19.13
2

Suppose our browser used port 23144 for our connection,
and Google’s server used 443.

Then our connection will be fully specified by the single tuple
<216.97.19.132, 23144, 172.217.6.78, 443,TCP>

Computer Science 161 Fall 2020 Weaver

TCP

24

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used to order data in the
connection: client program
receives data in order

Sequence number assigned to start
of byte stream is picked when
connection begins; doesn’t start at 0

Computer Science 161 Fall 2020 Weaver

TCP

25

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used to say how much data
has been received

Acknowledgment
gives seq # just
beyond highest seq.
received in order.

If sender successfully
sends N bytestream
bytes starting at seq S
then “ack” for that will
be S+N.

Computer Science 161 Fall 2020 Weaver

Sequence Numbers

26

Host A

Host B

TCP Data

TCP Data

TCP
HDR

TCP
HDR

ISN (initial sequence number)

Sequence number
from A = 1st byte

of data

ACK sequence
number from B =
next expected

byte

Computer Science 161 Fall 2020 Weaver

TCP

27

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags have different meaning: 
 
SYN: Synchronize, 
used to initiate a connection

ACK: Acknowledge,

used to indicate
acknowledgement of data

FIN: Finish,

used to indicate no more data
will be sent (but can still receive
and acknowledge data)

RST: Reset,

used to terminate the
connection completely

Computer Science 161 Fall 2020 Weaver

TCP Conn. Setup & Data Exchange

28

Client (initiator) 
IP address 1.2.1.2, port 3344

Server 
IP address 9.8.7.6, port 80

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80, SYN, Seq = x

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=3344, SYN+ACK, Seq = y, Ack = x+1

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80, ACK, Seq = x+1, Ack = y+1SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80,

ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html

SrcA=9.8.7.6, SrcP=80, DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16, Data=“200 OK … <html> …”

Computer Science 161 Fall 2020 Weaver

Abrupt Termination

• A sends a TCP packet with RESET (RST) flag to B

• E.g., because app. process on A crashed

• (Could instead be that B sends a RST to A)

• Assuming that the sequence numbers in the RST fit with what B expects, That’s It:

• B’s user-level process receives: ECONNRESET

• No further communication on connection is possible

29

SY
N

SY
N

 A
CK

A
CK

D
at

a

RS
TA

CK

time
A

B X

Computer Science 161 Fall 2020 Weaver

Disruption

• Normally, TCP finishes (“closes”) a connection by each side sending a
FIN control message

– Reliably delivered, since other side must ack

• But: if a TCP endpoint finds unable to continue (process dies; info
from other “peer” is inconsistent), it abruptly terminates by sending a
RST control message

– Unilateral
– Takes effect immediately (no ack needed)
– Only accepted by peer if has correct* sequence number

30

Computer Science 161 Fall 2020 Weaver

TCP Threat: Data Injection

• If attacker knows ports & sequence numbers (e.g., on-path attacker), attacker can inject data into
any TCP connection

• Receiver B is none the wiser!

• Termed TCP connection hijacking (or “session hijacking”)

• A general means to take over an already-established connection!

• We are toast if an attacker can see our TCP traffic!

• Because then they immediately know the port & sequence numbers

31

SY
N

SY
N

 A
CK

A
CK

D
at

a A
CK

time
A

B

N
as

ty
 D

at
a

N
as

ty
 D

at
a2

Computer Science 161 Fall 2020 Weaver

TCP Data Injection

32

Client (initiator) 
IP address 1.2.1.2, port 3344

Server 
IP address 9.8.7.6, port 80

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80,

ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html

...

Attacker (AirPwn, QUANTUM, etc) 
IP address 6.6.6.6, port N/A

SrcA=9.8.7.6, SrcP=80, 
DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16

Data=“200 OK … <poison> …”

Client
dutifully

processes
as server’s
response

Computer Science 161 Fall 2020 Weaver

TCP Data Injection

33

Client (initiator) 
IP address 1.2.1.2, port 3344

Server 
IP address 9.8.7.6, port 80

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80,

ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html

...

Attacker 
IP address 6.6.6.6, port N/A

SrcA=9.8.7.6, SrcP=80, 
DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16

Data=“200 OK … <poison> …”Client ignores since already

processed that part of
bytestream: the network
can duplicate packets 

so only pay attention to 
the first version in sequence

SrcA=9.8.7.6, SrcP=80, DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16, Data=“200 OK … <html> …”

Computer Science 161 Fall 2020 Weaver

TCP Threat: Disruption

aka RST injection
• The attacker can also inject RST packets instead of

payloads

• TCP clients must respect RST packets and stop all communication

• Because its a real world error recovery mechanism

• So "just ignore RSTs don't work"

• Who uses this?

• China: The Great Firewall does this to TCP requests

• A long time ago: Comcast, to block BitTorrent uploads

• Some intrusion detection systems: To hopefully mitigate an attack in progress

34

Computer Science 161 Fall 2020 Weaver

TCP Threat: Blind Hijacking

• Is it possible for an off-path attacker to inject into a TCP
connection even if they can’t see our traffic?

• YES: if somehow they can infer or guess the port and
sequence numbers

35

Computer Science 161 Fall 2020 Weaver

TCP Threat: Blind Spoofing

• Is it possible for an off-path attacker to create a fake TCP
connection, even if they can’t see responses?

• YES: if somehow they can infer or guess the TCP initial
sequence numbers

• Why would an attacker want to do this?

• Perhaps to leverage a server’s trust of a given client as identified by its IP

address

• Perhaps to frame a given client so the attacker’s actions during the

connections can’t be traced back to the attacker

36

Computer Science 161 Fall 2020 Weaver

Blind Spoofing on TCP Handshake

37

Alleged Client (not actual) 
IP address 1.2.1.2, port N/A

Server 
IP address 9.8.7.6, port 80

Blind Attacker
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,

DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = z+1

Attacker’s goal:
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,
DstP=80, ACK, Seq = z+1, ACK = y+1

SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,
DstP=80, ACK, Seq = z+1, ACK = y+1, Data

= “GET /transfer-money.html”

Computer Science 161 Fall 2020 Weaver

Blind Spoofing on TCP Handshake

38

Alleged Client (not actual) 
IP address 1.2.1.2, port NA

Server 
IP address 9.8.7.6, port 80

Blind Attacker
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,

DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = x+1

Small Note #1: if alleged client receives this, will
be confused ⇒ send a RST back to server …
… So attacker may need to hurry!
But firewalls may inadvertently stop this reply to
the alleged client so it never sends the RST 🤔

Computer Science 161 Fall 2020 Weaver

Blind Spoofing on TCP Handshake

39

Alleged Client (not actual) 
IP address 1.2.1.2, port NA

Server 
IP address 9.8.7.6, port 80

Blind Attacker
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,

DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = z+1

Big Note #2: attacker doesn’t
get to see this packet!

Computer Science 161 Fall 2020 Weaver

Blind Spoofing on TCP Handshake

40

Alleged Client (not actual) 
IP address 1.2.1.2, port N/A

Server 
IP address 9.8.7.6, port 80

Blind Attacker
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,

DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = z+1

So how can the attacker
figure out what value of y
to use for their ACK?

SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,
DstP=80, ACK, Seq = z+1, ACK = y+1

SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,
DstP=80, ACK, Seq = z+1, ACK = y+1, Data

= “GET /transfer-money.html”

Computer Science 161 Fall 2020 Weaver

Reminder: Establishing a TCP Connection

41

SYN

SYN+ACK

ACK

A B

Data
Data

Each host tells its Initial
Sequence Number

(ISN) to the other host.

(Spec says to pick based on
local clock)

Hmm, any way
for the attacker
to know this?

Sure – make a non-spoofed
connection first, and see what

server used for ISN y then!

How Do We Fix This?

Use a (Pseudo)-Random
ISN

Computer Science 161 Fall 2020 Weaver

Summary of TCP Security Issues

• An attacker who can observe your TCP connection can
manipulate it:

• Forcefully terminate by forging a RST packet

• Inject (spoof) data into either direction by forging data packets

• Works because they can include in their spoofed traffic the correct sequence

numbers (both directions) and TCP ports

• Remains a major threat today

42

Computer Science 161 Fall 2020 Weaver

Summary of TCP Security Issues

• An attacker who can observe your TCP connection can manipulate it:

• Forcefully terminate by forging a RST packet

• Inject (spoof) data into either direction by forging data packets

• Works because they can include in their spoofed traffic the correct sequence numbers (both

directions) and TCP ports

• Remains a major threat today

• If attacker could predict the ISN chosen by a server, could “blind spoof” a
connection to the server

• Makes it appear that host ABC has connected, and has sent data of the attacker’s choosing,

when in fact it hasn’t

• Undermines any security based on trusting ABC’s IP address

• Allows attacker to “frame” ABC or otherwise avoid detection

• Fixed (mostly) today by choosing random ISNs

43

Computer Science 161 Fall 2020 Weaver

But wasn't fixed completely...

• CVE-2016-5696

• "Off-Path TCP Exploits: Global Rate Limit Considered Dangerous" Usenix Security

2016

• https://www.usenix.org/conference/usenixsecurity16/technical-sessions/

presentation/cao

• Key idea:

• RFC 5961 added some global rate limits that acted as an information leak:

• Could determine if two clients were communicating on a given port

• Could determine if you could correctly guess the sequence #s for this communication

• Required a third host to probe this and at the same time spoof packets

• Once you get the sequence #s, you can then inject arbitrary content into the TCP
stream (d'oh)

44

Computer Science 161 Fall 2020 Weaver

The SYN Flood DOS Attack...

• When a computer receives a TCP connection it decides to accept

• It is going to allocate a significant amount of state

• So just send lots of SYNs to a server...

• Each SYN that gets a SYN/ACK would allocate some state

• So do a lot of them

• And spoof the source IP

• Attack is a resource consumption DOS

• Goal is to cause the server to consume memory and CPU

• Requires that the attacker be able to spoof packets

• Otherwise would just rate-limit the attacker's IPs

45

Computer Science 161 Fall 2020 Weaver

SYN-Flood Counter: 
SYN cookies
• Observation: Attacker needs to see or guess the server's

response to complete the handshake

• So don't allocate anything until you see the ACK... 

But how?

• Idea: Have our initial sequence not be random...

• But instead have it be pseudo-random

• So we create the SYN/ACK's ISN using the pseudo-random
function

• And then check than the ACK correctly used the sequence number

46

Computer Science 161 Fall 2020 Weaver

Easy SYN-cookies: 
HMAC
• On startup create a random key...

• For the server ISN:

• HMACk(SIP|DIP|SPORT|DPORT|client_ISN)

• Upon receipt of the ACK

• Verify that ACK is based off HMACk(SIP|DIP|SPORT|DPORT|client_ISN)

• Only then does the server allocate memory for the TCP
connection

• HMAC is very useful for these sorts of constructions: 
Give a token to a client, verify that the client presents the token later

47

Computer Science 161 Fall 2020 Weaver

Theme of The Rest Of This 
Lecture...

48

Computer Science 161 Fall 2020 Weaver

But Trust Can Be Delegated…

49

Computer Science 161 Fall 2020 Weaver

The Rest of Today's Lecture:

• Applying crypto technology in practice

• Two simple abstractions cover 80% of the use cases for

crypto:

– “Sealed blob”: Data that is encrypted and authenticated under a

particular key: Project 2

– Secure channel: Communication channel that can’t be eavesdropped

on or tampered with

• Today: TLS (Transport Layer Security) – a secure channel

• In network parlance, this is an “application layer” protocol but…

• designed to have any application over it, so really “layer 4.5” is a better

description: Its basically used as a security layer over TCP or (with dTLS) UDP
50

Computer Science 161 Fall 2020 Weaver

Building Secure End-to-End Channels

• End-to-end = communication protections achieved all the
way from originating client to intended server

• With no need to trust intermediaries

• Dealing with threats:

• Eavesdropping?

• Encryption (including session keys)

• Manipulation (injection, MITM)?

• Integrity (use of a MAC); replay protection

• Impersonation?

• Signatures

51

What’s missing?

Availability …()

Computer Science 161 Fall 2020 Weaver

Building A Secure End-to-End Channel: SSL/TLS

• SSL = Secure Sockets Layer (predecessor)

• TLS = Transport Layer Security (standard)

• Both terms used interchangeably

• Security for any application that uses TCP

• Secure = encryption/confidentiality + integrity + 

 authentication (of server, but not of client)

• Multiple uses

• Puts the ‘s’ in “https”

• Secures mail sent between servers (STARTTLS)

• Virtual Private Networks

52

Computer Science 161 Fall 2020 Weaver

An “Insecure” Web Page

53

Computer Science 161 Fall 2020 Weaver

A “Secure” Web Page

54

Lock Icon means: 

“Your communication between 
 your computer and the site  
 is encrypted and authenticated”
“Some other third party attests that 
 this site belongs to Amazon”
“These properties hold not just for the  
 main page, but any image or script is  
 also fetched from a site with attestation 
 and encryption”

People think lock icon means
“Hey, I can trust this site”  
(no matter where the lock icon 
itself actually appears).

Computer Science 161 Fall 2020 Weaver

Basic idea

• Browser (client) picks some symmetric
keys for encryption + authentication

• Client sends them to server, encrypted
using RSA public-key encryption

• Both sides send MACs

• Now they use these keys to encrypt

and authenticate all subsequent
messages, using symmetric-key
crypto

55

EKA(keys)

MACk1(…)

MACk2(…)

Browser Amazon
Server

Ek3(message), MACk1(…)

Computer Science 161 Fall 2020 Weaver

HTTPS Connection (SSL / TLS)

• Browser (client) connects via TCP to
Amazon’s HTTPS server

• Client picks 256-bit random number RB,
sends over list of crypto protocols it
supports (Cypher suite negotiation)

• Server picks 256-bit random number RS,
selects protocols to use for this session

• Server sends over its certificate

• (all of this is in the clear)

• Client now validates cert
56

SYN

SYN ACK

ACK

Browser Amazon
Server

Hello. My rnd # = RB. I support

(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or …

My rnd # = RS. Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~2-3 K
B of d

ata

Computer Science 161 Fall 2020 Weaver

Cipher Suite 
Negotiation
• Firefox's cipher-suite information

• Client sends to the server

• Server then choses which one it wants

• It should pick the common mode that both

prefer

• Its the bulk encryption modes
only

• Then key exchanges w
corresponding encryption mode

• Description is key exchange, signature (if

necessary), and then bulk cipher & hash
57

Computer Science 161 Fall 2020 Weaver

HTTPS Connection (SSL / TLS), cont.

• For RSA, browser constructs “Premaster
Secret” PS

• Browser sends PS encrypted using
Amazon’s public RSA key KAmazon

• Using PS, RB, and RS, browser & server
derive symmetric cipher keys 
(CB, CS) & MAC integrity keys (IB, IS)

• One pair to use in each direction

• Done by seeding a pRNG in common between the

browser and the server: 
Repeated calls to the pRNG then create the common
keys

58

Browser

Here’s my cert

~2-3 K
B of d

ata

{PS}KAmazon

PS

PS

Amazon
Server

Computer Science 161 Fall 2020 Weaver

HTTPS Connection (SSL / TLS), cont.

• For RSA, browser constructs “Premaster Secret” PS

• Browser sends PS encrypted using Amazon’s public RSA

key KAmazon

• Using PS, RB, and RS, browser & server derive symm.

cipher keys 
(CB, CS) & MAC integrity keys (IB, IS)

• One pair to use in each direction

• Browser & server exchange MACs computed over entire
dialog so far

• If good MAC, Browser displays

• All subsequent communication encrypted w/ symmetric

cipher (e.g., AES128) cipher keys, MACs

• Sequence #’s thwart replay attacks, RB and RS thwart replaying handshake

59

Browser

Here’s my cert

~2-3 K
B of d

ata

{PS}KAmazon

PS

PS

{M1, MAC(M1,IB)}CB

{M2, MAC(M2,IS)}CS

MAC(dialog,IS)

MAC(dialog,IB)

Amazon
Server

Computer Science 161 Fall 2020 Weaver

Alternative: Ephemeral Key Exchange via  
Diffie-Hellman
• For Diffie-Hellman, server generates random a,

sends public parameters and ga mod p

• Signed with server’s private key

• Browser verifies signature

• Browser generates random b, computes PS =

gab mod p, sends gb mod p to server

• Server also computes 

PS = gab mod p

• Remainder is as before: from PS, RB, and RS,

browser & server derive symm. cipher keys
(CB, CS) and MAC integrity keys (IB, IS), etc…

60

Browser

Here’s my cert

~2-3 K
B of d

ata

gb mod p
PS

PS

{M1, MAC(M1,IB)}CB

MAC(dialog,IS)

MAC(dialog,IB)

{g, p, ga mod p} K-1Amazon

…

Amazon
Server

Computer Science 161 Fall 2020 Weaver

Why Rb and Rs?

• Both Rb and Rs act to affect the keys... Why?

• Keys = F(Rb || Rs || PS)

• Needed to prevent a replay attack

• Attacker captures the handshake from either the client or server and replays

it...

• If the other side choses a different R the next time...

• The replay attack fails.

• But you don't need to check for reuse by the other side..

• Just make sure you don't reuse it on your side!

61

Computer Science 161 Fall 2020 Weaver

And Sabotaged pRNGs...

• Let us assume the server is using DHE...

• If an attacker can know a, they have all the information needed to decrypt the traffic:

• Since PS = gab, and can see gb.

• TLS spews a lot of "random" numbers publicly as well

• Nonces in the crypto, Rs, etc...

• If the server uses a bad pRNG which is both sabotaged and doesn't have
rollback resistance...

• Dual_EC DRBG where you know the secret used to create the generator...

• ANSI X9.31: An AES based one with a secret key...

• Attacker sees the handshake, sees subsequent PRNG calls, works backwards to
get the secret

• Attack of the week: DUHK

• https://blog.cryptographyengineering.com/2017/10/23/attack-of-the-week-duhk/

62

Computer Science 161 Fall 2020 Weaver

“sslstrip”

(Amazon fixed this fairly recently)

63

Regular web surfing: http: URL

So no integrity - a MITM attacker
can alter pages returned by server
…

And when we click here …

… attacker has changed the corresponding link so that it’s ordinary
http rather than https!

We never get a chance to use TLS’s protections! :-(

Computer Science 161 Fall 2020 Weaver

Why Browser UI's have changed...

• It used to be you'd only see "secure" if a site was encrypted

• No signaling on unencrypted sites

• Recently browsers started flagging non-encrypted sites as
"insecure"

• Encourage sites to not use the ssl-strip vulnerable anti-pattern

64

Computer Science 161 Fall 2020 Weaver

Big Changes for TLS 1.3 
Diffie/Hellman and ECDHE only
• The RSA key exchange has a substantial vulnerability

• If the attacker is ever able to compromise the server and obtain its RSA key… 

the attacker can decrypt any traffic captured

• RSA lacks forward secrecy

• So TLS 1.3 uses DHE/ECDHE only

• Requires an attacker who steals the server's private keys to still be a MitM to decrypt data

• TLS 1.3 also speeds things up:

• In the client hello, the client includes {gb mod p} for preferred parameters

• If the server finds it suitable, the server returns {ga mod p}

• Saves a round-trip time

• Also only supports AEAD mode encryptions and limited ciphersuites (e.g.
GCM)

65

Computer Science 161 Fall 2020 Weaver

But What About that 
“Certificate Validation”
• Certificate validation is used to

establish a chain of “trust”

• It actually is an attempt to build a

scalable trust framework

• This is commonly known as a
Public Key Infrastructure (PKI)

• Your browser is trusting the “Certificate
Authority” to be responsible…

66

Computer Science 161 Fall 2020 Weaver

Certificates

• Cert = signed statement about someone’s public key

• Note that a cert does not say anything about the identity of who gives you the cert

• It simply states a given public key KBob belongs to Bob …

• … and backs up this statement with a digital signature made using a different public/private key pair, say

from Verisign (a “Certificate Authority”)

• Bob then can prove his identity to you by you sending him something
encrypted with KBob …

• … which he then demonstrates he can read

• … or by signing something he demonstrably uses

• Works provided you trust that you have a valid copy of Verisign’s public

key …

• … and you trust Verisign to use prudence when she signs other people’s keys

67

Computer Science 161 Fall 2020 Weaver

Validating Amazon’s Identity

• Browser compares domain name in cert w/ URL

• Note: this provides an end-to-end property 

(as opposed to say a cert associated with an IP address)

• Browser accesses separate cert belonging to issuer

• These are hardwired into the browser – and trusted!

• There could be a chain of these …

• Browser applies issuer’s public key to verify signature S, obtaining the hash of
what the issuer signed

• Compares with its own SHA-1 hash of Amazon’s cert

• Assuming hashes match, now have high confidence it’s indeed Amazon’s public
key …

• assuming signatory is trustworthy, didn’t lose private key, wasn’t tricked into signing someone else’s

certificate, and that Amazon didn’t lose their key either…
68

Computer Science 161 Fall 2020 Weaver

End-to-End ⇒ Powerful Protections

• Attacker runs a sniffer to capture our WiFi session?

• But: encrypted communication is unreadable

• No problem!

• DNS cache poisoning?

• Client goes to wrong server

• But: detects impersonation

• No problem!

• Attacker hijacks our connection, injects new traffic

• But: data receiver rejects it due to failed integrity check since all communication has a mac on it

• No problem!

• Only thing a full man-in-the-middle attacker can do is inject RSTs, inject
invalid packets, or drop packets: limited to a denial of service

69

Computer Science 161 Fall 2020 Weaver

Validating Amazon’s Identity, cont.

• Browser retrieves cert belonging to the issuer

• These are hardwired into the browser – and trusted!

• But what if the browser can’t find a cert for the issuer?

70

