
Computer Science 161 Fall 2020 Weaver

Network 
Security

5

1

Computer Science 161 Fall 2020 Weaver

Administrivia...

• Project 2 due Friday...

• But you do have your slip days

• Wednesday (Tomorrow) is a holiday

• Nick's office hours today cancelled

2

Computer Science 161 Fall 2020 Weaver

Reminder: 
HTTPS Connection (SSL / TLS)
• Browser (client) connects via TCP to

Amazon’s HTTPS server

• Client picks 256-bit random number RB,

sends over list of crypto protocols it
supports

• Server picks 256-bit random number RS,
selects protocols to use for this session

• Server sends over its certificate

• (all of this is in the clear)

• Client now validates cert
3

SYN

SYN ACK

ACK

Browser Amazon
Server

Hello. My rnd # = RB. I support

(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or …

My rnd # = RS. Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~2-3 K
B of d

ata

Computer Science 161 Fall 2020 Weaver

HTTPS Connection (SSL / TLS), cont.

• For RSA, browser constructs “Premaster Secret” PS

• Browser sends PS encrypted using Amazon’s public RSA

key KAmazon

• Using PS, RB, and RS, browser & server derive symm.

cipher keys 
(CB, CS) & MAC integrity keys (IB, IS)

• One pair to use in each direction

• Browser & server exchange MACs computed over entire
dialog so far

• If good MAC, Browser displays

• All subsequent communication encrypted w/ symmetric

cipher (e.g., AES128) cipher keys, MACs

• Sequence #’s thwart replay attacks

4

Browser

Here’s my cert

~2-3 K
B of d

ata

{PS}KAmazon

PS

PS

{M1, MAC(M1,IB)}CB

{M2, MAC(M2,IS)}CS

MAC(dialog,IS)

MAC(dialog,IB)

Amazon
Server

Computer Science 161 Fall 2020 Weaver

Alternative: Ephemeral Key Exchange via  
Diffie-Hellman
• For Diffie-Hellman (DHE), server generates

random a, sends public parameters and ga mod p

• Signed with server’s private key

• Browser verifies signature

• Browser generates random b, computes PS = gab

mod p, sends gb mod p to server

• Server also computes 

PS = gab mod p

• Remainder is as before: from PS, RB, and RS,

browser & server derive symm. cipher keys (CB,
CS) and MAC integrity keys (IB, IS), etc…

5

Browser

Here’s my cert

~2-3 K
B of d

ata

gb mod p
PS

PS

{M1, MAC(M1,IB)}CB

MAC(dialog,IS)

MAC(dialog,IB)

{g, p, ga mod p} K-1Amazon

…

Amazon
Server

Computer Science 161 Fall 2020 Weaver

Cipher Suite 
Negotiation
• Chrome's cipher-suite

information

• Client sends to the server

• Server then choses which one it wants

• It should pick the common mode that both

prefer

• Then its the bulk encryption

• Then key exchanges w

encryption mode

• Description is key exchange, signature (if

necessary), and then bulk cipher & hash
6

Computer Science 161 Fall 2020 Weaver

Why Rb and Rs?

• Both Rb and Rs act to affect the keys... Why?

• Keys = F(Rb || Rs || PS)

• Needed to prevent a replay attack

• Attacker captures the handshake from either the client or server and replays

it...

• If the other side choses a different R the next time...

• The replay attack fails.

• But you don't need to check for reuse by the other side..

• Just make sure you don't reuse it on your side!

7

Computer Science 161 Fall 2020 Weaver

Certificates

• Cert = signed statement about someone’s public key

• Note that a cert does not say anything about the identity of who gives you the cert

• It simply states a given public key KBob belongs to Bob …

• … and backs up this statement with a digital signature made using a different public/private key pair, say

from Verisign (a “Certificate Authority”)

• Bob then can prove his identity to you by you sending him something
encrypted with KBob …

• … which he then demonstrates he can read

• … or by signing something he demonstrably uses

• Works provided you trust that you have a valid copy of Verisign’s public

key …

• … and you trust Verisign to use prudence when she signs other people’s keys

8

Computer Science 161 Fall 2020 Weaver

Validating Amazon’s Identity

• Browser compares domain name in cert w/ URL

• Note: this provides an end-to-end property 

(as opposed to say a cert associated with an IP address)

• Browser accesses separate cert belonging to issuer

• These are hardwired into the browser – and trusted!

• There could be a chain of these …

• Browser applies issuer’s public key to verify signature S, obtaining the hash of
what the issuer signed

• Compares with its own SHA-1 hash of Amazon’s cert

• Assuming hashes match, now have high confidence it’s indeed Amazon’s public
key …

• assuming signatory is trustworthy, didn’t lose private key, wasn’t tricked into signing someone else’s

certificate, and that Amazon didn’t lose their key either…
9

Computer Science 161 Fall 2020 Weaver

End-to-End ⇒ Powerful Protections

• Attacker runs a sniffer to capture our WiFi session?

• But: encrypted communication is unreadable

• No problem!

• DNS cache poisoning?

• Client goes to wrong server

• But: detects impersonation

• No problem!

• Attacker hijacks our connection, injects new traffic

• But: data receiver rejects it due to failed integrity check since all communication has a mac on it

• No problem!

• Only thing a full man-in-the-middle attacker can do is inject RSTs, inject
invalid packets, or drop packets: limited to a denial of service

10

Computer Science 161 Fall 2020 Weaver

Validating Amazon’s Identity, cont.

• Browser retrieves cert belonging to the issuer

• These are hardwired into the browser – and trusted!

• But what if the browser can’t find a cert for the issuer?

11

Computer Science 161 Fall 2020 Weaver

12

Computer Science 161 Fall 2020 Weaver

Validating Amazon’s Identity, cont.

• Browser retrieves cert belonging to the issuer

• These are hardwired into the browser – and trusted!

• What if browser can’t find a cert for the issuer?

• If it can’t find the cert, then warns the user that site has not been verified

• Can still proceed, just without authentication

• Q: Which end-to-end security properties do we lose if we incorrectly
trust that the site is whom we think?

• A: All of them!

• Goodbye confidentiality, integrity, authentication

• Active attacker can read everything, modify, impersonate

13

Computer Science 161 Fall 2020 Weaver

SSL / TLS Limitations

• Properly used, SSL / TLS provides powerful end-to-end protections

• So why not use it for everything??

• Issues:

• Cost of public-key crypto (fairly minor)

• Takes non-trivial CPU processing (but today a minor issue)

• Note: symmetric key crypto on modern hardware is effectively free

• Hassle of buying/maintaining certs (fairly minor)

• LetsEncrypt makes this almost automatic

• Integrating with other sites that don’t use HTTPS

• Namely, you can’t: Non-HTTPS content won’t load!

• Latency: extra round trips ⇒ 1st page slower to load
14

Computer Science 161 Fall 2020 Weaver

SSL / TLS Limitations, cont.

• Problems that SSL / TLS does not take care of ?

• Censorship:

• The censor sees the certificate in the clear, so knows who the client is talking to

• Optional Server Name Identification (SNI) is also sent in the clear

• The censor can then inject RSTs or block the communication

• TLS 1.3 supports encrypting the certificate & SNI (ESNI), but....

• Censors are just blocking all ESNI connections.

• SQL injection/XSS/CSRF/server-side coding/logic flaws

• Vulnerabilities introduced by server inconsistencies

15

Computer Science 161 Fall 2020 Weaver

SSL/TLS Problem: 
Revocation
• A site screws up and an attacker steals the private key

associated with a certificate, what now?

• Certificates have a timestamp and are only good for a specified time

• But this time is measured in years!?!?

• Two mitigations:

• Certificate revocation lists

• Your browser occasionally calls back to get a list of "no longer accepted" certificates

• OSCP

• Online Certificate Status Protocol: 

https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol

16

https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol

Computer Science 161 Fall 2020 Weaver

TLS/SSL Trust Issues

• User has to make correct trust decisions …

17

Computer Science 161 Fall 2020 Weaver

18

Computer Science 161 Fall 2020 Weaver

19

Computer Science 161 Fall 2020 Weaver

20

Computer Science 161 Fall 2020 Weaver

21

Computer Science 161 Fall 2020 Weaver

22

Computer Science 161 Fall 2020 Weaver

23

Computer Science 161 Fall 2020 Weaver

24

Computer Science 161 Fall 2020 Weaver

25

The equivalent as seen by most Internet users:

(note: an actual Windows error message!)

Computer Science 161 Fall 2020 Weaver

TLS/SSL Trust Issues, cont.

• “Commercial certificate authorities protect you from anyone
from whom they are unwilling to take money.”

• Matt Blaze, circa 2001

• So how many CAs do we have to worry about, anyway?

26

Computer Science 161 Fall 2020 Weaver

27

Computer Science 161 Fall 2020 Weaver

TLS/SSL Trust Issues

• “Commercial certificate authorities protect you from anyone
from whom they are unwilling to take money.”

• Matt Blaze, circa 2001

• So how many CAs do we have to worry about, anyway?

• Of course, it’s not just their greed that matters …

28

Computer Science 161 Fall 2020 Weaver

29

Computer Science 161 Fall 2020 Weaver

30

Computer Science 161 Fall 2020 Weaver

31

This appears to be a fully
valid cert using normal

browser validation rules.

Only detected by Chrome due
to its introduction of cert

“pinning” – requiring that
certs for certain domains

must be signed by specific
CAs rather than any generally

trusted CA

Computer Science 161 Fall 2020 Weaver

32

Computer Science 161 Fall 2020 Weaver

The DigiNotar Fallout

• The result was the “CA Death Sentence”:

• Web browsers removed it from the trusted root certificate store

• This happened again with “WoSign”

• A Chinese CA

• WoSign would allow an interesting attack

• If I controlled nweaver.github.com…

• WoSign would allow me to create a certificate for *.github.com!?!?

• And a bunch of other shady shenanigans

33

http://github.com

Computer Science 161 Fall 2020 Weaver

TLS/SSL Trust Issues

• “Commercial certificate authorities protect you from anyone
from whom they are unwilling to take money.”

• Matt Blaze, circa 2001

• So how many CAs do we have to worry about, anyway?

• Of course, it’s not just their greed that matters …

• … and it’s not just their diligence & security that matters …

• “A decade ago, I observed that commercial certificate authorities protect you

from anyone from whom they are unwilling to take money. That turns out to
be wrong; they don't even do that much.” - Matt Blaze, circa 2010

34

Computer Science 161 Fall 2020 Weaver

So the Modern Solution: 
Invoke Ronald Reagan, “Trust, but Verify”
• Static Certificate Pinning: 

The chrome browser has a list of certificates or certificate
authorities that it trusts for given sites

• Now creating a fake certificate requires attacking a particular CA

• Transparency mechanisms:

• Public logs provided by certificate authorities

• As a hash chain: We are actually serious so we don’t call it a “blockchain”

• Coupled with the server able to say “ONLY accept certificates from me that are from a CA

implementing transparency”

• Browser extensions (EFF’s TLS observatory)

• Backbone monitors (ICSI’s TLS notary)

35

Computer Science 161 Fall 2020 Weaver

SSL/TLS Problem: 
Revocation
• A site screws up and an attacker steals the private key

associated with a certificate, what now?

• Certificates have a timestamp and are only good for a specified time

• But this time is measured in years!?!?

• Two mitigations:

• Certificate revocation lists

• Your browser occasionally calls back to get a list of "no longer accepted" certificates

• OSCP

• Online Certificate Status Protocol: 

https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol

36

https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol

Computer Science 161 Fall 2020 Weaver

And Making It Cheap: 
LetsEncrypt...
• Coupled to the depreciation of unencrypted HTTP...

• Need to be able to have HTTPS be just about the same complexity...

• Idea: Make it easy to "prove" you own a web site:

• Can you write an arbitrary cookie at an arbitrary location?

• Build automated infrastructure to do this

• Script to create a private key

• Generate a certificate signing request

• PKI authority says "here's a file, put it on the server"

• Script puts it on the server

• PKI now returns certificate...

• Signed with a limited duration so you must automate this process

37

Computer Science 161 Fall 2020 Weaver

And Now A Song: 
50 Whys to Stop A Server...
• You are a bad guy...

• And you want to stop some server from

being available

• Why? You name it...

• Because its hard for someone to frag

you in an online game if you "boot" him
from the network

• Because people will pay up to stop the
attack

• Because it conveys a political message

• Get paid for by others

38

Computer Science 161 Fall 2020 Weaver

The Easy DoS on a System: 
Resource Consumption...
• Bad Dude has an account on your computer...

• And wants to disrupt your work on Project 2...

• He runs this simple program:

• while(1):

• Write random junk to random files

• (uses disk space, thrashes the disk)

• Allocate a bunch of RAM and write to it

• (uses memory)

• fork()

• (creates more processes to run)

• Only defense is some form of quota or limits: 
The system itself must enforce some isolation

39

Computer Science 161 Fall 2020 Weaver

The Network DOS

40

Computer Science 161 Fall 2020 Weaver

DoS & Networks

• How could you DoS a target’s Internet access?

• Send a zillion packets at them

• Internet lacks isolation between traffic of different users!

• What resources does attacker need to pull this off?

• At least as much sending capacity (bandwidth) as the bottleneck link of the

target’s Internet connection

• Attacker sends maximum-sized packets

• Or: overwhelm the rate at which the bottleneck router can process packets

• Attacker sends minimum-sized packets!

• (in order to maximize the packet arrival rate)

41

Computer Science 161 Fall 2020 Weaver

Defending Against Network DoS

• Suppose an attacker has access to a beefy system with high-
speed Internet access (a “big pipe”).

• They pump out packets towards the target at a very high rate.

• What might the target do to defend against the onslaught?

• Install a network filter to discard any packets that arrive with attacker’s IP

address as their source

• E.g., drop * 66.31.33.7:* -> *:*

• Or it can leverage any other pattern in the flooding traffic that’s not in benign traffic

• Note, the filter needs to be before the bottleneck!

• Attacker’s IP address = means of identifying misbehaving user

42

Computer Science 161 Fall 2020 Weaver

Filtering Sounds Pretty Easy …

• … but DoS filters can be easily evaded:

• Make traffic appear as though it’s from many hosts

• Spoof the source address so it can’t be used to filter

• Just pick a random 32-bit number of each packet sent

• How does a defender filter this?

• They don’t!

• Best they can hope for is that operators around the world implement anti-spoofing mechanisms

(today about 75% do)

• Use many hosts to send traffic rather than just one

• Distributed Denial-of-Service = DDoS (“dee-doss”)

• Requires defender to install complex filters

• How many hosts is “enough” for the attacker?

• Today they are very cheap to acquire … :-(

43

Computer Science 161 Fall 2020 Weaver

It’s Not A “Level Playing Field”

• When defending resources from exhaustion, need to
beware of asymmetries, where attackers can consume
victim resources with little comparable effort

• Makes DoS easier to launch

• Defense costs much more than attack

• Particularly dangerous form of asymmetry: amplification

• Attacker leverages system’s own structure to pump up the load they induce

on a resource

44

Computer Science 161 Fall 2020 Weaver

Amplification

• Example of amplification: DNS lookups

• Reply is generally much bigger than request

• Since it includes a copy of the reply, plus answers etc.

• Attacker spoofs DNS request to a patsy DNS 
 server, seemingly from the target

• Small attacker packet yields large flooding packet

• Doesn’t increase # of packets, but total volume

• Note #1: these examples involve blind spoofing

• So for network-layer flooding, generally only works for UDP-based protocols (can’t establish a

TCP connection)

• But any single-packet UDP protocol where the response is bigger can be used for amplification!

• Note #2: victim doesn’t see spoofed source addresses

• Addresses are those of actual intermediary systems

45

Computer Science 161 Fall 2020 Weaver

Botnets

• If an attacker can control a lot of systems

• They gain a huge amount of bandwidth

• Modern DOS attacks approach 1 Terabit-per-second with direct connections

• And it becomes very hard to filter them out

• How do you specify 1M machines you want to ignore?

• You control these "bots" in a "botnet"

• So you can issue commands that cause all these systems to do what you want

• This is what took down dyn DNS (and with it Twitter, Reddit, etc...)
two years ago: A botnet composed primarily of compromised
cameras and DVRs:

• The Miraj botnet

46

Computer Science 161 Fall 2020 Weaver

Transport-Level Denial-of-Service

• Recall TCP’s 3-way connection establishment handshake

–Goal: agree on initial sequence numbers

47

Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates state
associated with
connection here 
(buffers, timers,
counters)Attacker doesn’t

even need to
send this ack

Computer Science 161 Fall 2020 Weaver

Transport-Level Denial-of-Service

• Recall TCP’s 3-way connection establishment handshake

• Goal: agree on initial sequence numbers

• So a single SYN from an attacker suffices to force the server to spend
some memory

48

Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates state
associated with
connection here 
(buffers, timers,
counters)Attacker doesn’t

even need to
send this ack

Computer Science 161 Fall 2020 Weaver

TCP SYN Flooding

• Attacker targets memory rather than network capacity

• Every (unique) SYN that the attacker sends burdens the target

• What should target do when it has no more memory for a new

connection?

• No good answer!

• Refuse new connection?

• Legit new users can’t access service

• Evict old connections to make room?

• Legit old users get kicked off

49

Computer Science 161 Fall 2020 Weaver

TCP SYN Flooding Defenses

• How can the target defend itself? 

• Approach #1: make sure they have tons of memory!

• How much is enough?

• Depends on resources attacker can bring to bear (threat model), which might

be hard to know

• Back of the envelope:

• If we need to hold 10kB for 1 minute: to exhaust 1GB, an attacker needs...

• 100k packets/minute, or a bit more than 1,000 packets per second

50

Computer Science 161 Fall 2020 Weaver

TCP SYN Flooding Defenses

• Approach #2: identify bad actors & refuse their connections

• Hard because only way to identify them is based on IP address

• We can’t for example require them to send a password because doing so requires we

have an established connection!

• For a public Internet service, who knows which addresses customers might

come from?

• Plus: attacker can spoof addresses since they don’t need to complete TCP

3-way handshake

• Approach #3: don’t keep state! (“SYN cookies”; only works
for spoofed SYN flooding)

51

Computer Science 161 Fall 2020 Weaver

SYN Flooding Defense: Idealized

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

• Server: when SYN arrives, rather than keeping state locally, send
it to the client …

• Client needs to return the state in order to established connection

52

Server only saves
state here

Do not save state
here; give to client

Computer Science 161 Fall 2020 Weaver

SYN Flooding Defense: Idealized

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

• Server: when SYN arrives, rather than keeping state locally, send
it to the client …

• Client needs to return the state in order to established connection

53

Server only saves
state here

Do not save state
here; give to client

Problem: the world isn’t so ideal! 

TCP doesn’t include an easy way to
add a new <State> field like this.

Is there any way to get the same
functionality without having to
change TCP clients?

Computer Science 161 Fall 2020 Weaver

Practical Defense: SYN Cookies

Client (initiator)

SYN, SeqNum = x

SYN and ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

• Server: when SYN arrives, encode connection state entirely within  
SYN-ACK’s sequence # y

• y = encoding of necessary state, using server secret

• When ACK of SYN-ACK arrives, server only creates state if value of y from it agrees w/
secret

54

Server only creates
state here

Do not create 
state here

Instead, encode it here

Computer Science 161 Fall 2020 Weaver

SYN Cookies: Discussion

• Illustrates general strategy: rather than holding state, encode it so that it is
returned when needed

• For SYN cookies, attacker must complete 
3-way handshake in order to burden server

• Can’t use spoofed source addresses

• Note #1: strategy requires that you have enough bits to encode all the state

• (This is just barely the case for SYN cookies)

• You can think of a SYN cookie as a truncated MAC of the sender IP/port/sequence: 

And really, HMAC is the easiest way to do this!

• Note #2: if it’s expensive to generate or check the cookie, then it’s not a
win

55

Computer Science 161 Fall 2020 Weaver

And Once Again, HMAC to the rescue...

• HMAC is a great way to force others to store state...

• Create cookie:  

HMAC(k, data) -> 🍪

• Check cookie: 

HMAC(k, data) ?= 🍪

• Allow you to force others to store all the data you want that
you can then verify later

• All you need to do is make sure that they know they need to send all the data
back to you will the cookie...

• And you need the cookie to be big enough
56

Computer Science 161 Fall 2020 Weaver

Application-Layer DoS

• Rather than exhausting network or memory resources,
attacker can overwhelm a service’s processing capacity

• There are many ways to do so, often at little expense to
attacker compared to target (asymmetry)

57

Computer Science 161 Fall 2020 Weaver

58

Computer Science 161 Fall 2020 Weaver

Algorithmic complexity attacks

• Attacker can try to trigger worst-case complexity of algorithms / data
structures

• Example: You have a hash table. 
Expected time: O(1). Worst-case: O(n).

• Attacker picks inputs that cause hash collisions. 
Time per lookup: O(n). 
Total time to do n operations: O(n2).

• Solution? Use algorithms with good worst-case running time.

• E.g., using b bits of HMAC ensures that P[hk(x)=hk(y)] = .5b, so hash collisions will be rare.

• If the attacker doesn't know the key that is

59

Computer Science 161 Fall 2020 Weaver

Application-Layer DoS

• Defenses against such attacks?

• Approach #1: Only let legit users issue expensive requests

• Relies on being able to identify/authenticate them

• Note: that this itself might be expensive!

• Approach #2: Force legit users to “burn” cash

• This is what a captcha really is!

• Approach #3: massive over-provisioning ($$$)

• Or pay for someone else who massively over provisions for everyone: 

A content delivery network
60

Computer Science 161 Fall 2020 Weaver

DoS Defense in General Terms

• Defending against program flaws requires:

• Careful design and coding/testing/review

• Consideration of behavior of defense mechanisms

• E.g. buffer overflow detector that when triggered halts execution to prevent code injection ⇒

denial-of-service

• Defending resources from exhaustion can be really hard.
Requires:

• Isolation and scheduling mechanisms

• Keep adversary’s consumption from affecting others

• Reliable identification of different users

• Or just a ton of $$$$

61

Computer Science 161 Fall 2020 Weaver

Controlling Networks … On The Cheap

• Motivation: How do you harden a set of systems against external attack?

• Key Observation:

• The more network services your machines run, the greater the risk

• Due to larger attack surface

• One approach: on each system, turn off unnecessary network services

• But you have to know all the services that are running

• And sometimes some trusted remote users still require access

• Plus key question of scaling

• What happens when you have to secure 100s/1000s of systems?

• Which may have different OSs, hardware & users …

• Which may in fact not all even be identified …

62

Computer Science 161 Fall 2020 Weaver

Taming Management Complexity

• Possibly more scalable defense: Reduce risk by blocking in
the network outsiders from having unwanted access your
network services

• Interpose a firewall the traffic to/from the outside must traverse

• Chokepoint can cover thousands of hosts

• Where in everyday experience do we see such chokepoints?

63

Internet Internal
Network

Computer Science 161 Fall 2020 Weaver

Selecting a Security Policy

• Firewall enforces an (access control) policy:

• Who is allowed to talk to whom, accessing what service?

• Distinguish between inbound & outbound connections

• Inbound: attempts by external users to connect to services on internal machines

• Outbound: internal users to external services

• Why? Because fits with a common threat model. There are thousands of internal users

(and we’ve vetted them). There are billions of outsiders.

• Conceptually simple access control policy:

• Permit inside users to connect to any service

• External users restricted:

• Permit connections to services meant to be externally visible

• Deny connections to services not meant for external access

64

Computer Science 161 Fall 2020 Weaver

How To Treat Traffic Not Mentioned in Policy?

• Default Allow: start off permitting external access to
services

• Shut them off as problems recognized

• Default Deny: start off permitting just a few known, well-
secured services

• Add more when users complain (and mgt. approves)

• Pros & Cons?

• Flexibility vs. conservative design

• Flaws in Default Deny get noticed more quickly / less painfully

65

In general, use Default Deny

✓

Computer Science 161 Fall 2020 Weaver

A Dumb Policy: 
Deny All Inbound connections...
• The simplest packet filters are stateless

• They examine only individual packets to make a decision

• But even the simplest policy can be hard to implement

• Deny All Inbound is the default policy on your home connection

• Allow:

• Any outbound packet

• Any inbound packet that is a reply... OOPS

• We can fake it for TCP with some ugly hacks

• Allow all outbound TCP

• Allow all inbound TCP that does not have both the SYN flag set and the ACK flag not set

• May still allow an attacker to play some interesting games

• We can't even fake this for UDP!
66

