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Administrivia...

• Project 2 due Friday...

• But you do have your slip days


• Wednesday (Tomorrow) is a holiday

• Nick's office hours today cancelled
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Reminder: 
HTTPS Connection (SSL / TLS)
• Browser (client) connects via TCP to 

Amazon’s HTTPS server

• Client picks 256-bit random number RB, 

sends over list of crypto protocols it 
supports


• Server picks 256-bit random number RS, 
selects protocols to use for this session


• Server sends over its certificate

• (all of this is in the clear)


• Client now validates cert
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SYN

SYN ACK

ACK

Browser Amazon
Server

Hello.  My rnd # = RB.  I support

(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or  …

My rnd # = RS.  Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~2-3 K
B of d

ata
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HTTPS Connection (SSL / TLS), cont.

• For RSA, browser constructs “Premaster Secret” PS

• Browser sends PS encrypted using Amazon’s public RSA 

key KAmazon

• Using PS, RB, and RS, browser & server derive symm. 

cipher keys 
(CB, CS) & MAC integrity keys (IB, IS)

• One pair to use in each direction


• Browser & server exchange MACs computed over entire 
dialog so far


• If good MAC, Browser displays

• All subsequent communication encrypted w/ symmetric 

cipher (e.g., AES128) cipher keys, MACs

• Sequence #’s thwart replay attacks
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Browser

Here’s my cert

~2-3 K
B of d

ata

{PS}KAmazon

PS

PS

{M1, MAC(M1,IB)}CB

{M2, MAC(M2,IS)}CS

MAC(dialog,IS)

MAC(dialog,IB)

Amazon
Server
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Alternative: Ephemeral Key Exchange via  
Diffie-Hellman
• For Diffie-Hellman (DHE), server generates 

random a, sends public parameters and ga mod p

• Signed with server’s private key


• Browser verifies signature

• Browser generates random b, computes PS = gab 

mod p, sends gb mod p to server

• Server also computes 

PS = gab mod p

• Remainder is as before: from PS, RB, and RS, 

browser & server derive symm. cipher keys (CB, 
CS) and MAC integrity keys (IB, IS), etc…
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Browser

Here’s my cert

~2-3 K
B of d

ata

gb mod p
PS

PS

{M1, MAC(M1,IB)}CB

MAC(dialog,IS)

MAC(dialog,IB)

{g, p, ga mod p} K-1Amazon

…

Amazon
Server
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Cipher Suite 
Negotiation
• Chrome's cipher-suite 

information

• Client sends to the server

• Server then choses which one it wants

• It should pick the common mode that both 

prefer


• Then its the bulk encryption

• Then key exchanges w 

encryption mode

• Description is key exchange, signature (if 

necessary), and then bulk cipher & hash
6
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Why Rb and Rs?

• Both Rb and Rs act to affect the keys...  Why?

• Keys = F(Rb || Rs || PS)


• Needed to prevent a replay attack

• Attacker captures the handshake from either the client or server and replays 

it...


• If the other side choses a different R the next time...

• The replay attack fails.


• But you don't need to check for reuse by the other side..

• Just make sure you don't reuse it on your side!
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Certificates

• Cert = signed statement about someone’s public key

• Note that a cert does not say anything about the identity of who gives you the cert

• It simply states a given public key KBob belongs to Bob …

• … and backs up this statement with a digital signature made using a different public/private key pair, say 

from Verisign (a “Certificate Authority”)


• Bob then can prove his identity to you by you sending him something 
encrypted with KBob …

• … which he then demonstrates he can read


• … or by signing something he demonstrably uses

• Works provided you trust that you have a valid copy of Verisign’s public 

key …

• … and you trust Verisign to use prudence when she signs other people’s keys
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Validating Amazon’s Identity

• Browser compares domain name in cert w/ URL

• Note: this provides an end-to-end property 

(as opposed to say a cert associated with an IP address)


• Browser accesses separate cert belonging to issuer

• These are hardwired into the browser – and trusted!

• There could be a chain of these …


• Browser applies issuer’s public key to verify signature S, obtaining the hash of 
what the issuer signed

• Compares with its own SHA-1 hash of Amazon’s cert


• Assuming hashes match, now have high confidence it’s indeed Amazon’s public 
key …

• assuming signatory is trustworthy, didn’t lose private key, wasn’t tricked into signing someone else’s 

certificate, and that Amazon didn’t lose their key either…
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End-to-End ⇒ Powerful Protections

• Attacker runs a sniffer to capture our WiFi session?

• But: encrypted communication is unreadable

• No problem!


• DNS cache poisoning?

• Client goes to wrong server

• But: detects impersonation

• No problem!


• Attacker hijacks our connection, injects new traffic

• But: data receiver rejects it due to failed integrity check since all communication has a mac on it

• No problem!


• Only thing a full man-in-the-middle attacker can do is inject RSTs, inject 
invalid packets, or drop packets: limited to a denial of service
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Validating Amazon’s Identity, cont.

• Browser retrieves cert belonging to the issuer

• These are hardwired into the browser – and trusted!


• But what if the browser can’t find a cert for the issuer?
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Validating Amazon’s Identity, cont.

• Browser retrieves cert belonging to the issuer

• These are hardwired into the browser – and trusted!


• What if browser can’t find a cert for the issuer?

• If it can’t find the cert, then warns the user that site has not been verified

• Can still proceed, just without authentication


• Q: Which end-to-end security properties do we lose if we incorrectly 
trust that the site is whom we think?


• A: All of them!

• Goodbye confidentiality, integrity, authentication

• Active attacker can read everything, modify, impersonate
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SSL / TLS Limitations

• Properly used, SSL / TLS provides powerful end-to-end protections

• So why not use it for everything??

• Issues:

• Cost of public-key crypto (fairly minor)

• Takes non-trivial CPU processing (but today a minor issue)

• Note: symmetric key crypto on modern hardware is effectively free


• Hassle of buying/maintaining certs (fairly minor)

• LetsEncrypt makes this almost automatic


• Integrating with other sites that don’t use HTTPS

• Namely, you can’t: Non-HTTPS content won’t load!


• Latency: extra round trips ⇒ 1st page slower to load
14
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SSL / TLS Limitations, cont.

• Problems that SSL / TLS does not take care of ?

• Censorship:

• The censor sees the certificate in the clear, so knows who the client is talking to

• Optional Server Name Identification (SNI) is also sent in the clear

• The censor can then inject RSTs or block the communication

• TLS 1.3 supports encrypting the certificate & SNI (ESNI), but....

• Censors are just blocking all ESNI connections.


• SQL injection/XSS/CSRF/server-side coding/logic flaws

• Vulnerabilities introduced by server inconsistencies

15



Computer Science 161 Fall 2020 Weaver

SSL/TLS Problem: 
Revocation
• A site screws up and an attacker steals the private key 

associated with a certificate, what now?

• Certificates have a timestamp and are only good for a specified time

• But this time is measured in years!?!?


• Two mitigations:

• Certificate revocation lists

• Your browser occasionally calls back to get a list of "no longer accepted" certificates

• OSCP

• Online Certificate Status Protocol: 

https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol
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TLS/SSL Trust Issues

• User has to make correct trust decisions …
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The equivalent as seen by most Internet users:

(note: an actual Windows error message!)
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TLS/SSL Trust Issues, cont.

• “Commercial certificate authorities protect you from anyone 
from whom they are unwilling to take money.”


• Matt Blaze, circa 2001


• So how many CAs do we have to worry about, anyway?
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TLS/SSL Trust Issues

• “Commercial certificate authorities protect you from anyone 
from whom they are unwilling to take money.”


• Matt Blaze, circa 2001


• So how many CAs do we have to worry about, anyway?

• Of course, it’s not just their greed that matters …
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This appears to be a fully 
valid cert using normal 

browser validation rules.

Only detected by Chrome due 
to its introduction of cert 

“pinning” –  requiring that 
certs for certain domains 

must be signed by specific 
CAs rather than any generally 

trusted CA
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The DigiNotar Fallout

• The result was the “CA Death Sentence”:

• Web browsers removed it from the trusted root certificate store


• This happened again with “WoSign”

• A Chinese CA


• WoSign would allow an interesting attack

• If I controlled nweaver.github.com…

• WoSign would allow me to create a certificate for *.github.com!?!?

• And a bunch of other shady shenanigans

33
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TLS/SSL Trust Issues

• “Commercial certificate authorities protect you from anyone 
from whom they are unwilling to take money.”


• Matt Blaze, circa 2001


• So how many CAs do we have to worry about, anyway?

• Of course, it’s not just their greed that matters …

• … and it’s not just their diligence & security that matters …

• “A decade ago, I observed that commercial certificate authorities protect you 

from anyone from whom they are unwilling to take money. That turns out to 
be wrong; they don't even do that much.” - Matt Blaze, circa 2010
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So the Modern Solution: 
Invoke Ronald Reagan, “Trust, but Verify”
• Static Certificate Pinning: 

The chrome browser has a list of certificates or certificate 
authorities that it trusts for given sites

• Now creating a fake certificate requires attacking a particular CA


• Transparency mechanisms:

• Public logs provided by certificate authorities

• As a hash chain:  We are actually serious so we don’t call it a “blockchain”

• Coupled with the server able to say “ONLY accept certificates from me that are from a CA 

implementing transparency”

• Browser extensions (EFF’s TLS observatory)

• Backbone monitors (ICSI’s TLS notary)
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SSL/TLS Problem: 
Revocation
• A site screws up and an attacker steals the private key 

associated with a certificate, what now?

• Certificates have a timestamp and are only good for a specified time

• But this time is measured in years!?!?


• Two mitigations:

• Certificate revocation lists

• Your browser occasionally calls back to get a list of "no longer accepted" certificates

• OSCP

• Online Certificate Status Protocol: 

https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol
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And Making It Cheap: 
LetsEncrypt...
• Coupled to the depreciation of unencrypted HTTP...

• Need to be able to have HTTPS be just about the same complexity...


• Idea:  Make it easy to "prove" you own a web site:

• Can you write an arbitrary cookie at an arbitrary location?


• Build automated infrastructure to do this

• Script to create a private key

• Generate a certificate signing request

• PKI authority says "here's a file, put it on the server"

• Script puts it on the server

• PKI now returns certificate...

• Signed with a limited duration so you must automate this process
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And Now A Song: 
50 Whys to Stop A Server...
• You are a bad guy...

• And you want to stop some server from 

being available


• Why?  You name it...

• Because its hard for someone to frag 

you in an online game if you "boot" him 
from the network


• Because people will pay up to stop the 
attack


• Because it conveys a political message

• Get paid for by others
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The Easy DoS on a System: 
Resource Consumption...
• Bad Dude has an account on your computer...

• And wants to disrupt your work on Project 2...


• He runs this simple program:

• while(1):

• Write random junk to random files

• (uses disk space, thrashes the disk)


• Allocate a bunch of RAM and write to it

• (uses memory)


• fork()

• (creates more processes to run)


• Only defense is some form of quota or limits: 
The system itself must enforce some isolation

39
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The Network DOS

40
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DoS & Networks

• How could you DoS a target’s Internet access?

• Send a zillion packets at them

• Internet lacks isolation between traffic of different users!


• What resources does attacker need to pull this off?

• At least as much sending capacity (bandwidth) as the bottleneck link of the 

target’s Internet connection

• Attacker sends maximum-sized packets

• Or: overwhelm the rate at which the bottleneck router can process packets

• Attacker sends minimum-sized packets!

•  (in order to maximize the packet arrival rate)

41
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Defending Against Network DoS

• Suppose an attacker has access to a beefy system with high-
speed Internet access (a “big pipe”).


• They pump out packets towards the target at a very high rate.

• What might the target do to defend against the onslaught?

• Install a network filter to discard any packets that arrive with attacker’s IP 

address as their source

• E.g., drop * 66.31.33.7:* -> *:*

• Or it can leverage any other pattern in the flooding traffic that’s not in benign traffic

• Note, the filter needs to be before the bottleneck!

• Attacker’s IP address = means of identifying misbehaving user
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Filtering Sounds Pretty Easy …

• … but DoS filters can be easily evaded:

• Make traffic appear as though it’s from many hosts

• Spoof the source address so it can’t be used to filter

• Just pick a random 32-bit number of each packet sent


• How does a defender filter this?

• They don’t!

• Best they can hope for is that operators around the world implement anti-spoofing mechanisms 

(today about 75% do)


• Use many hosts to send traffic rather than just one

• Distributed Denial-of-Service = DDoS (“dee-doss”)

• Requires defender to install complex filters

• How many hosts is “enough” for the attacker?

• Today they are very cheap to acquire … :-(
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It’s Not A “Level Playing Field”

• When defending resources from exhaustion, need to 
beware of asymmetries, where attackers can consume 
victim resources with little comparable effort


• Makes DoS easier to launch

• Defense costs much more than attack


• Particularly dangerous form of asymmetry: amplification

• Attacker leverages system’s own structure to pump up the load they induce 

on a resource

44
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Amplification

• Example of amplification: DNS lookups

• Reply is generally much bigger than request

• Since it includes a copy of the reply, plus answers etc.


•  Attacker spoofs DNS request to a patsy DNS 
 server, seemingly from the target


• Small attacker packet yields large flooding packet

• Doesn’t increase # of packets, but total volume


• Note #1: these examples involve blind spoofing

• So for network-layer flooding, generally only works for UDP-based protocols (can’t establish a 

TCP connection)

• But any single-packet UDP protocol where the response is bigger can be used for amplification!


• Note #2: victim doesn’t see spoofed source addresses

• Addresses are those of actual intermediary systems

45



Computer Science 161 Fall 2020 Weaver

Botnets

• If an attacker can control a lot of systems

• They gain a huge amount of bandwidth

• Modern DOS attacks approach 1 Terabit-per-second with direct connections


• And it becomes very hard to filter them out

• How do you specify 1M machines you want to ignore?


• You control these "bots" in a "botnet"

• So you can issue commands that cause all these systems to do what you want


• This is what took down dyn DNS (and with it Twitter, Reddit, etc...) 
two years ago:  A botnet composed primarily of compromised 
cameras and DVRs:

• The Miraj botnet
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Transport-Level Denial-of-Service

• Recall TCP’s 3-way connection establishment handshake

–Goal: agree on initial sequence numbers

47

Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates state 
associated with 
connection here 
(buffers, timers, 
counters)Attacker doesn’t 

even need to 
send this ack
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Transport-Level Denial-of-Service

• Recall TCP’s 3-way connection establishment handshake

• Goal: agree on initial sequence numbers


• So a single SYN from an attacker suffices to force the server to spend 
some memory

48

Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates state 
associated with 
connection here 
(buffers, timers, 
counters)Attacker doesn’t 

even need to 
send this ack
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TCP SYN Flooding

• Attacker targets memory rather than network capacity

• Every (unique) SYN that the attacker sends burdens the target

• What should target do when it has no more memory for a new 

connection?

• No good answer!

• Refuse new connection?

• Legit new users can’t access service

• Evict old connections to make room?

• Legit old users get kicked off

49
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TCP SYN Flooding Defenses

• How can the target defend itself? 

• Approach #1: make sure they have tons of memory!

• How much is enough?

• Depends on resources attacker can bring to bear (threat model), which might 

be hard to know


• Back of the envelope: 

• If we need to hold 10kB for 1 minute: to exhaust 1GB, an attacker needs...

• 100k packets/minute, or a bit more than 1,000 packets per second
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TCP SYN Flooding Defenses

• Approach #2: identify bad actors & refuse their connections

• Hard because only way to identify them is based on IP address

• We can’t for example require them to send a password because doing so requires we 

have an established connection!

• For a public Internet service, who knows which addresses customers might 

come from?

• Plus: attacker can spoof addresses since they don’t need to complete TCP 

3-way handshake 


• Approach #3: don’t keep state!  (“SYN cookies”; only works 
for spoofed SYN flooding)
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SYN Flooding Defense: Idealized

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

• Server: when SYN arrives, rather than keeping state locally, send 
it to the client …


• Client needs to return the state in order to established connection 

52

Server only saves 
state here

Do not save state 
here; give to client
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SYN Flooding Defense: Idealized

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

• Server: when SYN arrives, rather than keeping state locally, send 
it to the client …


• Client needs to return the state in order to established connection 

53

Server only saves 
state here

Do not save state 
here; give to client

Problem: the world isn’t so ideal! 

TCP doesn’t include an easy way to 
add a new <State> field like this.


Is there any way to get the same 
functionality without having to 
change TCP clients?
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Practical Defense: SYN Cookies

Client (initiator)

SYN, SeqNum = x

SYN and ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

• Server: when SYN arrives, encode connection state entirely within  
SYN-ACK’s sequence # y

• y = encoding of necessary state, using server secret


• When ACK of SYN-ACK arrives, server only creates state if value of y from it agrees w/ 
secret

54

Server only creates 
state here

Do not create 
state here

Instead, encode it here
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SYN Cookies: Discussion

• Illustrates general strategy: rather than holding state, encode it so that it is 
returned when needed


• For SYN cookies, attacker must complete 
3-way handshake in order to burden server

• Can’t use spoofed source addresses


• Note #1: strategy requires that you have enough bits to encode all the state

• (This is just barely the case for SYN cookies)

• You can think of a SYN cookie as a truncated MAC of the sender IP/port/sequence: 

And really, HMAC is the easiest way to do this!


• Note #2: if it’s expensive to generate or check the cookie, then it’s not a 
win
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And Once Again, HMAC to the rescue...

• HMAC is a great way to force others to store state...

• Create cookie:  

HMAC(k, data) -> 🍪

• Check cookie: 

HMAC(k, data) ?= 🍪


• Allow you to force others to store all the data you want that 
you can then verify later


• All you need to do is make sure that they know they need to send all the data 
back to you will the cookie...


• And you need the cookie to be big enough
56
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Application-Layer DoS

• Rather than exhausting network or memory resources, 
attacker can overwhelm a service’s processing capacity


• There are many ways to do so, often at little expense to 
attacker compared to target (asymmetry)
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Algorithmic complexity attacks

• Attacker can try to trigger worst-case complexity of algorithms / data 
structures


• Example: You have a hash table. 
Expected time: O(1).  Worst-case: O(n).


• Attacker picks inputs that cause hash collisions. 
Time per lookup: O(n). 
Total time to do n operations: O(n2).


• Solution?  Use algorithms with good worst-case running time.

• E.g., using b bits of HMAC ensures that P[hk(x)=hk(y)] = .5b, so hash collisions will be rare.

• If the attacker doesn't know the key that is
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Application-Layer DoS

• Defenses against such attacks?

• Approach #1: Only let legit users issue expensive requests

• Relies on being able to identify/authenticate them

• Note: that this itself might be expensive!


• Approach #2: Force legit users to “burn” cash

• This is what a captcha really is!


• Approach #3: massive over-provisioning ($$$)

• Or pay for someone else who massively over provisions for everyone: 

A content delivery network
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DoS Defense in General Terms

• Defending against program flaws requires:

• Careful design and coding/testing/review

• Consideration of behavior of defense mechanisms

• E.g. buffer overflow detector that when triggered halts execution to prevent code injection ⇒ 

denial-of-service


• Defending resources from exhaustion can be really hard.  
Requires:

• Isolation and scheduling mechanisms

• Keep adversary’s consumption from affecting others


• Reliable identification of different users

• Or just a ton of $$$$
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Controlling Networks … On The Cheap

• Motivation: How do you harden a set of systems against external attack?

• Key Observation:

• The more network services your machines run, the greater the risk


• Due to larger attack surface


• One approach: on each system, turn off unnecessary network services

• But you have to know all the services that are running

• And sometimes some trusted remote users still require access


• Plus key question of scaling

• What happens when you have to secure 100s/1000s of systems?

• Which may have different OSs, hardware & users …

• Which may in fact not all even be identified …
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Taming Management Complexity

• Possibly more scalable defense: Reduce risk by blocking in 
the network outsiders from having unwanted access your 
network services


• Interpose a firewall the traffic to/from the outside must traverse

• Chokepoint can cover thousands of hosts

• Where in everyday experience do we see such chokepoints?

63

Internet Internal 
Network
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Selecting a Security Policy

• Firewall enforces an (access control) policy:

• Who is allowed to talk to whom, accessing what service?


• Distinguish between inbound & outbound connections

• Inbound: attempts by external users to connect to services on internal machines

• Outbound: internal users to external services

• Why?  Because fits with a common threat model.  There are thousands of internal users 

(and we’ve vetted them).  There are billions of outsiders.


• Conceptually simple access control policy:

• Permit inside users to connect to any service

• External users restricted: 

• Permit connections to services meant to be externally visible

• Deny connections to services not meant for external access
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How To Treat Traffic Not Mentioned in Policy?

• Default Allow: start off permitting external access to 
services


• Shut them off as problems recognized


• Default Deny: start off permitting just a few known, well-
secured services


• Add more when users complain (and mgt. approves)


• Pros & Cons?

• Flexibility vs. conservative design

• Flaws in Default Deny get noticed more quickly / less painfully

65

In general, use Default Deny

✓
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A Dumb Policy: 
Deny All Inbound connections...
• The simplest packet filters are stateless

• They examine only individual packets to make a decision


• But even the simplest policy can be hard to implement

• Deny All Inbound is the default policy on your home connection


• Allow:

• Any outbound packet

• Any inbound packet that is a reply...  OOPS


• We can fake it for TCP with some ugly hacks

• Allow all outbound TCP

• Allow all inbound TCP that does not have both the SYN flag set and the ACK flag not set

• May still allow an attacker to play some interesting games


• We can't even fake this for UDP!
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