
Computer Science 161 Fall 2020 Weaver

Censorship &
Start of Malware

 1

Computer Science 161 Fall 2020 Weaver

Announcements

• No discussion this week!

• Next week will be final networking discussion

• RRR week discussion will be review topics

• List will be posted

• Reminder, December will be COVID-ugly but Spring should
be great

• So you need to just hunker down for a couple more months...

• And tell your family to do so too.  

It is not too late to reschedule Thanksgiving to Zoom, you all have licenses!
 2

Computer Science 161 Fall 2020 Weaver

We Saw Surveillance...

Now Lets See Censorship
• Who wants to censor?

• Businesses: Don't want users browsing PornHub at work

• There is huge potential legal liability if you don't!

• Many countries: Child Exploitation Material

• Notably the UK requires this of ISPs: 

Block known Child Exploitation sites

• Many countries: Porn

• Again, notably the UK requires on-by-default porn filters

• Many countries: Politics

• Russia, China, Iran, etc...

• China was the pioneer here, but everyone else has followed suit

 3

Computer Science 161 Fall 2020 Weaver

Mechanisms...

• DNS Interdiction/Mandates

• China's Great Firewall

• Turkey v Twitter

• IP Blocking

• On-path attack

• China's Great Firewall

• In-path proxies

• Selective: UK

• Mandatory: Russia

• Serious Voodoo:

• China's Tor Blocking

• China's Great Cannon

 4

Computer Science 161 Fall 2020 Weaver

Evasion...

• TLS:

• Forces a censor into an "all or nothing" decision: 

Can either block the whole site or allow the whole site

• But the censor can always identify the site

• TLS Server Name Identification and/or the DNS request

• Well, now they can:

• For a while, you could say in TLS you want to talk to site A... 

But on HTTP in TLS say you want to talk to site B

• And if the server supported both sites:  

A Content Delivery Network (CDN) like CloudFlare or Google's App Engine), 👍

• "Domain Fronting" no longer supported by the CDNs since it really is a bug, not a feature

• Plus CrimeFlare CloudFlare wants to do business in China with a local partner

 5

Computer Science 161 Fall 2020 Weaver

Evasion...

VPNs & Other Software
• Create an encrypted link to a non-censored network

• And through that link direct all your traffic

• Ends up in a cat & mouse game with the censors

• Censor can't block all VPNs: 

Business travelers may depend on them so can't just go "terminate"

• Can block all public VPNs: 

Buy the services, detect & block them

• So if you are visiting China...

• Set up your own VPN or ssh tunnel back here in the US

 6

Computer Science 161 Fall 2020 Weaver

Blocking DNS... 
Force the ISPs to Comply
• Turkey v Twitter in 2014:

• Turkey got into a spat with Twitter...

• Twitter was allowing recordings of Turkish government corruption

• Turkey's initial response:

• ALL ISPs, block Twitter's DNS entry

• People's initial response:

• Switch DNS servers to 8.8.8.8

• Turkey's Subsequent  
Response:

• Block 8.8.8.8...

 7

Computer Science 161 Fall 2020 Weaver

The Great Firewall: 
Packet Injection Censorship Including DNS

• Detects that a request meets a target criteria

• Easiest test: "Looks like a search for 'falun':

• Falun Gong (法輪功), a banned quasi-religious organization

• Injects a TCP RST (reset) back to the requesting system

• Then enters a ~1 minute "stateless block": Responds to all further packets with RSTs  

SYN/ACK PACKETS!!!

• Same system used for DNS censorship:

• dig www.facebook.com @www.tsinghua.edu.cn

 8

GET /?falun HTTP/1.1
host: www.google.com

HTTP 200 OK
.....GET /?falun HTTP/1.1

host: www.google.com

TCP RST: Terminate this flow

Computer Science 161 Fall 2020 Weaver

Live Demos of The Great Firewall...

• dig +short AAAA www.tsinghua.edu.cn
• www.d.tsinghua.edu.cn.

• 2402:f000:1:404:166:111:4:100

• sudo tcpdump -vvv -i en0 -s 1800 host
2402:f000:1:404:166:111:4:100

• dig www.facebook.com @2402:f000:1:404:166:111:4:100
• dig www.benign.com @2402:f000:1:404:166:111:4:100
• dig TXT www.facebook.com
@2402:f000:1:404:166:111:4:100

• curl --header "Host: www.google.com" "http://
[2402:f000:1:404:166:111:4:100]/?falun"

 9

Computer Science 161 Fall 2020 Weaver

Features of the 
Great Firewall
• The Great Firewall is on-path

• It can detect and inject additional traffic, but not block the real requests from the server

• It is single-sided

• Assumes it can see only one side of the flow: 

Can send SYN, ACK, data, and get a response

• It is very stateful

• Must first see the SYN and ACK, and reassembles out of order traffic

• It is multi-process parallel

• ~100 independent processes that load-balance traffic

• The injected packets have a distinct side channel

• Each process increments a counter for the TTL

• IPIDs are also "odd" but harder to categorize

 10

Computer Science 161 Fall 2020 Weaver

On Path v In Path

• China went largely with an on-path solution

• Mostly because they were early, and repurposed network intrusion detection

• Most others use an in-path solution

• Generally starting with a web proxy such as squid: 

A MitM tool for intercepting and modifying web traffic

• Initial use was as a cache for web traffic: 

Designed to speed up web surfing when bandwidth was more expensive and
CDNs didn't predominate

• Now a large market from commercial vendors

 11

Computer Science 161 Fall 2020 Weaver

Benefits of Both

• On Path:

• Easier deployment: 

Just put into the network
backbone

• Fail "safe": 
If device craps out, the net still
works

• Easy to scale: 
Load balancer/NIDS approach 

• In Path:

• Can't use Layer 3 evasions

• Easy Deployment for ISPs

• Potential to "slow down", not

just block

• Can MitM TLS connections 

with a client-added root cert

• Lots more commercial solutions 

 12

Computer Science 161 Fall 2020 Weaver

Selective Proxy: 
Mandatory in the UK
• For some sets of IPs that may host child exploitation

material...

• ISP redirects just those IPs to a proxy that strips out any known-bad items

• Allows "fail safe" for the rest of the Internet

• Of course, for TLS this has to be entirely block-or-not!

 13

Computer Science 161 Fall 2020 Weaver

The UK "Virgin Killer" 
Incident
• An album cover for "Virgin Killer" by the Scorpions is on the

page about that album

• And it is borderline at best... 

The record company executive who created it really should have been jailed

• UK's "Internet Watch Foundation" called it CP...

• So all Wikipedia traffic got routed through the filtering proxy...

• With very bad effects!

• No TLS connections allowed

• Editing attempts w/o TLS triggered the bot detector

 14

Computer Science 161 Fall 2020 Weaver

Kazakhstan v Browsers

• Kazakhstan uses in-path censorship...

• But doesn't want to just block sites like Wikipedia that are TLS only but may contain

"unfavorable" content

• Their attempt: require everyone to install another root certificate

• A feature present for corporate networks which often use in-path monitoring on TLS

• Then just MitM all that traffic to do the fine-grained censorship

• Mozilla and Google said "Hell No!"

• Alternate roots are only for businesses: 

The browsers modified to reject the Kazakhstan root out of hand

• Kasakhstan backed down...
 15

Computer Science 161 Fall 2020 Weaver

Advanced Chinese Voodoo: 
The Great Cannon and Active Probing...
• China pioneered Internet censorship

• Partially to advantage local Internet companies

• But manly because the government is a group of seriously
repressive A*()holes lead by a guy who looks like Winnie the
Pooh

• Tienamen Square Massacre probably killed >1000

• The history of the "One Child" policy

• Ethnic cleansing of Uighurs in Xinjiang

• And now Hong Kong...

 16

Computer Science 161 Fall 2020 Weaver

A Chinese Problem: 
They Can't Block Github!!
• Github is TLS only...

• So can't selectively censor

• Github can't be blocked since so many Chinese tech
businesses are:

• Pull open source repo from GitHub

• Put on white box hardware

• Profit!

• Activists know this: 
The "greatfire.org" activists host instructions on evading the
Great Firewall on GitHub

 17

http://greatfire.org

Computer Science 161 Fall 2020 Weaver

Enter the Chinese Great Cannon

• The Great Cannon is a dedicated Internet attack tool probably
operated by the Chinese government

• An internet-scale selective man-in-the-middle designed to replace traffic with

malicious payloads

• Used to co-opt unwitting foreign visitors to Chinese web sites into participating in

DDoS attacks

• Almost certainly also has the capability to "pwn-by-IP": 

Launch exploits into targets' web surfing

• "Great Cannon" is our name:  

the actual Chinese name remains unknown

• Structurally related to the Great Firewall, but a separate devices
 18

Computer Science 161 Fall 2020 Weaver

The DDoS Attack on  
GreatFire and GitHub
• GreatFire is an anti-censorship group

• Currently uses "Collateral Freedom": convey information through services

they hope are "Too Important to Block"

• GitHub is one such service: 

You can't block GitHub and work in the global tech economy

• GreatFire's CloudFront instances DDoSed between 3/16/15
and 3/26

• GreatFire's GitHub pages targeted between 3/26 and 4/8

• GitHub now tracks referer to ignore the DoS traffic

 19

Computer Science 161 Fall 2020 Weaver

The DDoS used Malicious 
JavaScript...
• JavaScript in pages would repeatedly fetch the target page

with a cache-busting nonce

• Vaguely reminiscent of Anonymous's "Low Orbit Ion Cannon" DDoS tool

• JavaScript appeared to be served "from the network"

• Replacing advertising, social widgets, and utility scripts served from Baidu

servers

• Several attributed it to the Great Firewall

• Based on DDoS sources and "odd" TTL on injected packets

• But it didn't really look quite right to us...

 20

Computer Science 161 Fall 2020 Weaver

The Baidu Malicious 
Scripts

• Baidu servers were serving a malicious script...

• Packet with a standard JavaScript packer

• Probably http://dean.edwards.name/packer/ with Base62 encoding

• Payload is "keep grabbing https://github.com/greatfire and  

https://github.com/cn-nytimes"

• Github quickly defanged the attack: You first have to visit another page on Github for

these pages to load

• Others quickly concluded the Great Firewall was responsible...
 21

eval(function(p,a,c,k,e,r){e=function(c){return(c<a
,'|||function|Date|script|new|var|jquery|com|||getTime|url_array|r_send2|responseTime|count|x3c|unixtime|
startime|write|document|https|github|NUM|src|get|http|requestTime|js|r_send|setTimeout|getMonth|getDay|
getMinutes|getSeconds|1E3|baidu|min|2E3|greatfire|cn|nytimes|libs|length|window|jQuery|code|ajax|url|dataType|
timeout|1E4|cache|beforeSend|latest|complete|return|Math|floor|3E5|UTC|getFullYear|getHours'.split('|'),0,{}))

Computer Science 161 Fall 2020 Weaver

But The Malicious Reply For The Baidu Script
Seemed "Odd"

• The injected packets had incremented TTLs and similar funky IPID
sequence

• The Great Firewall's side channel

• The second and third packets had bad ACK values and incrementing
windows too

• But the dog that didn't bark:

• No legitimate reply from the server?!??

 22

IP (ttl 64, id 12345) us > Baidu: [S] seq 0, win 8192
IP (ttl 47, id 12345) Baidu > us: [S.] seq 0, ack 1 win 8192
IP (ttl 64, id 12346) us > Baidu: [.] seq 1 ack 1 win 8192
IP (ttl 64, id 12346) us > Baidu: [P.] seq 1:119 ack 1 win 8192
IP (ttl 201, id 55896) Baidu > us: [P.] seq 1:108 ack 119 win 767
IP (ttl 202, id 55741) Baidu > us: [P.] seq 108:1132 ack 1 win 768
IP (ttl 203, id 55699) Baidu > us: [FP.] seq 1132:1238 ack 1 win 769

Computer Science 161 Fall 2020 Weaver

The Eureka Moment: 
Two Fetches
• Built a custom python script using scapy

• Connect to server

• Send request

• Wait 2 seconds

• Resend the same request packet

• What happens? The real server replied!?!

• The first request was attacked by the cannon and replaced with a malicious

payload

• The second request passed through unmolested to the real server

• Who's reply indicated it never received the original request!

 23

Computer Science 161 Fall 2020 Weaver

So Now Its Time

To Categorize
• Send "valid target" request split over 3 packets:

• Ignored

• Send "Naked packets": just a TCP data payload without the initial SYN
or ACK

• May trigger response

• Send "No target than valid target"

• Ignored

• Retry ignored request

• Ignored (at least for a while...)

• One over from target IP

• Ignored

 24

Computer Science 161 Fall 2020 Weaver

Tells us the basic structure: 
Flow Cache and Stateless Decider
• Non data packets: Ignore

• Packets to other IPs: Ignore

• Data packet on new flow: 

Examine first packet

• If matches target criteria AND flip-a-coin (roughly 2% chance): Return exploit

and drop requesting packet

• Data packet on existing flow (flow cache): Ignore

• Even if it decided to inject a packet on this flow

 25

Computer Science 161 Fall 2020 Weaver

Localizing the  
Cannon
• Traceroute both for the cannon and for the Great Firewall

• TTL limited data for the Cannon

• TTL limited SYN, ACK, DATA for the firewall

• Tracerouted to two intercepted targets on different paths

• One in China Telecom, the other in China Unacom

• Both targets intercepted by the Cannon in the same location as the Firewall

 26

Computer Science 161 Fall 2020 Weaver

Operational History: 
LBNL Time Machine
• Examine Lawrence Berkeley National Lab's Time Machine for

the odd-TTL signature:

• LBNL does a bulk record start of all connections

• Initial attack: Targeting GreatFire's "collateral freedom" domains

• Unpacked payload, showed evidence of hand-typing (a 0 vs o typo fixed)

• Near the end, GreatFire placed a 302 redirect on their domains to

www.cac.gov.cn,

• Makes the DOS target the Cyber Administration of China!

• Second attack: the GitHub targeting

• Packed payload, but same basic script

 27

Computer Science 161 Fall 2020 Weaver

Build It Yourself With 
OpenFlow
• Start with an OpenFlow capable switch or router

• Default rule:

• Divert all non-empty packets where dst=target and dport=80

• Analysis engine:

• Examine single packet to make exploitation decision

• If no-exploit: Forward packet, whitelist flow

• If exploit: Inject reply, whitelist flow

• Matches observed stateless and flow-cache behavior

• Other alternative of "BGP-advertise target IP" would probably create a

traceroute anomaly (which unfortunately we didn't test for at the time)
 28

Computer Science 161 Fall 2020 Weaver

Modifying The Cannon For 
"Pwn By IP" targeting
• The Cannon is good for a lot more than DDoSing GitHub...

• A nation-state MitM is a very powerful attack tool...

• Change criteria slightly: select traffic FROM targeted IP rather than to
IP

• Need to identify your target's IP address in some other means

• Emails from your target, "benign" fishing emails, public data, etc...

• Expand the range of target scripts

• "Looks like JavaScript" in the fetch

• Reply with "attack the browser" payload

• Open an iframe pointing to an exploit server with your nice Flash 0-day...

• This change would likely take less than a day to implement!
 29

Computer Science 161 Fall 2020 Weaver

Modify For "Perfect Phishing" Malicious 
Email from China
• Identify your target's mail server

• dig +mx theguyIwanttohack.com

• Intercept all traffic to your target's mail server

• Redirect to a man-in-the-middle sink server that intercepts the email

• Able to strip STARTTLS

• Can't tamper with DKIM, but who validates DKIM?

• Any word documents to your target? Modify to include malcode

• Then just send/receive from the cannon to forward the message on to the final server

• Really good for targeting activists and others who communicate with
Chinese sources

• A phishing .doc email is indistinguishable from a legitimate email to a human!

• I could probably prototype this in a week or two
 30

Computer Science 161 Fall 2020 Weaver

Oh, and We Know 
We Struck A Nerve...

 31

Computer Science 161 Fall 2020 Weaver

Serious Policy 
Implications
• China believes they are justified in attacking those who attack the

Great Firewall

• Both DoS attacks targeted GreatFire's "Collateral Freedom" strategy of hosting counter-

censorship material on "too critical to block" encrypted services

• Baidu was probably a bigger victim than GreatFire

• GreatFire and Github mitigated the attack

• GreatFire: Collateral Freedom services now block non-Chinese access, in addition to the DOS-

redirection strategy

• GitHub: Targeted pages won't load unless you visit some other page first

• But Baidu services (and all unencrypted Chinese webservices) must be considered
explicitly hostile to those outside of China

• It can't be a global Internet brand

• Note, we saw at least one injection script on qq.

 32

Computer Science 161 Fall 2020 Weaver

And Active Probing...

• You see some encrypted goop...

• No framing, no nothing

• Is it OK to block this IP?

• It could be someone using a VPN/censorship evasion system

• It could be something else

• A robust solution for any public VPN type system...

• Just handshake it and see!

 33

Computer Science 161 Fall 2020 Weaver

China Does This Operationally...

• For several different protocols: 
Notably ssh and Tor Obs3

• See request on the Internet

• Using yet ANOTHER sensor:

• It doesn't reassemble (unlike the Great Firewall)

• It does rely on seeing the SYN (unlike the Great Cannon)

• Not necessarily at the same location as the Great Firewall's sensor

• Trigger another system to do a handshake

• Apparently through what appears to be a large proxy network to prevent IP

blocking

• If handshake succeeds, block IP

 34

Computer Science 161 Fall 2020 Weaver

Malware: 
Catch-All Term for "Malicious Code"
• Attacker code running on victim computer(s)

• Two parts:

• How it gets there (propagation)

• What it does (payload)

 35

Computer Science 161 Fall 2020 Weaver

What Can Malware Payload Do?

• Pretty much anything

• Payload generally decoupled from

how manages to run

• Only subject to permissions under

which it runs

• Examples:

• Brag or exhort or extort (pop up a

message/display)

• Trash files (just to be nasty)

• Launch external activity (spam,
click fraud, DoS; banking)

• Steal information (exfiltrate)

• Keylogging; screen / audio /

camera capture

• Encrypt files (ransomware)

• Cause physical damage

• Possibly delayed until
condition occurs

• “time bomb” / “logic bomb”
 36

Computer Science 161 Fall 2020 Weaver

Malware That Automatically Propagates

• Virus = code that propagates (replicates) across systems by arranging to
have itself eventually executed, creating a new additional instance

• Generally infects by altering stored code

• Worm = code that self-propagates/replicates across systems by arranging
to have itself immediately executed (creating new addl. instance)

• Generally infects by altering running code

• No user intervention required

• (Note: line between these isn’t always so crisp; plus some malware
incorporates both approaches)

• Trojan = code that does NOT self propagate, but instead requires a user action

• NO EXPERIMENTATION WITH SELF REPLICATING CODE!
 37

Computer Science 161 Fall 2020 Weaver

The Problem of Viruses

• Opportunistic = code will eventually execute

• Generally due to user action

• Running an app, booting their system, opening an attachment

• Separate notions: how it propagates vs.  
what else it does when executed (payload)

• General infection strategy: 
find some code lying around, 
alter it to include the virus

• Have been around for decades …

• … resulting arms race has heavily 

influenced evolution of modern malware
 38

Computer Science 161 Fall 2020 Weaver

Propagation

• When virus runs, it looks for an opportunity to infect additional systems

• One approach: look for USB-attached thumb drive, alter any

executables it holds to include the virus

• Strategy: when drive later attached to another system & altered executable runs, it locates

and infects executables on new system’s hard drive

• Or: when user sends email w/ attachment, virus alters attachment to
add a copy of itself

• Works for attachment types that include programmability

• E.g., Word documents (macros)

• Virus can also send out such email proactively, using user’s address book + enticing subject

(“I Love You”)

 39

Computer Science 161 Fall 2020 Weaver

 40

Original Program Instructions
Entry point

Virus Original Program Instructions
Entry point

1. Entry point

Original Program Instructions

Virus

2. JMP

3. JMP

Original program
instructions can be:

• Application the
user runs

• Run-time library /
routines resident
in memory

• Disk blocks used
to boot OS

• Autorun file on
USB device

• …

Other variants are
possible; whatever
manages to get the
virus code executed

Computer Science 161 Fall 2020 Weaver

Detecting Viruses

• Signature-based detection

• Look for bytes corresponding to injected virus code

• High utility due to replicating nature

• If you capture a virus V on one system, by its nature the virus will be trying to infect many other systems

• Can protect those other systems by installing recognizer for V

• Drove development of multi-billion $$ AV industry 
(AV = “antivirus”)

• So many endemic viruses that detecting well-known ones becomes a “checklist item” for security

audits

• Using signature-based detection also has de facto utility for (glib) marketing

• Companies compete on number of signatures …

• … rather than their quality (harder for customer to assess)

 41

Computer Science 161 Fall 2020 Weaver

 42

Computer Science 161 Fall 2020 Weaver

Virus Writer / AV Arms Race

• If you are a virus writer and your beautiful new creations don’t
get very far because each time you write one, the AV
companies quickly push out a signature for it ….

• …. What are you going to do?

• Need to keep changing your viruses …

• … or at least changing their appearance!

• How can you mechanize the creation of new instances of
your viruses …

• … so that whenever your virus propagates, what it injects as a copy of itself

looks different?
 43

Computer Science 161 Fall 2020 Weaver

Polymorphic Code

• We’ve already seen technology for creating a representation of data
apparently completely unrelated to the original: encryption!

• Idea: every time your virus propagates, it inserts a newly
encrypted copy of itself

• Clearly, encryption needs to vary

• Either by using a different key each time

• Or by including some random initial padding (like an IV)

• Note: weak (but simple/fast) crypto algorithm works fine

• No need for truly strong encryption, just obfuscation

• When injected code runs, it decrypts itself to obtain the original
functionality

 44

Computer Science 161 Fall 2020 Weaver

 45

Virus Original Program Instructions

D
ecryptor

Main Virus Code

K
ey

D
ecryptor

Encrypted Glob of Bits

K
ey

Original Program Instructions

}

Jmp

Instead of this …

Virus has this
initial structure

When executed,
decryptor applies key
to decrypt the glob …

⇓
… and jumps to the
decrypted code once
stored in memory

Computer Science 161 Fall 2020 Weaver

D
ecryptor

Main Virus Code

K
ey

D
ecryptor

Encrypted Glob of Bits

K
ey

Jmp

⇓

Once running, virus
uses an encryptor with
a new key to propagate

E
ncryptor

}

D
ecryptor

Different Encrypted Glob of Bits

K
ey2

⇓

Polymorphic Propagation

 46

New virus instance
bears little resemblance
to original

Computer Science 161 Fall 2020 Weaver

Arms Race: Polymorphic Code

• Given polymorphism, how might we then detect viruses?

• Idea #1: use narrow sig. that targets decryptor

• Issues?

• Less code to match against ⇒ more false positives

• Virus writer spreads decryptor across existing code

• Idea #2: execute (or statically analyze) suspect code to see if it decrypts!

• Issues?

• Legitimate “packers” perform similar operations (decompression)

• How long do you let the new code execute?

• If decryptor only acts after lengthy legit execution, difficult to spot

• Virus-writer countermeasures?

 47

Computer Science 161 Fall 2020 Weaver

Metamorphic Code

• Idea: every time the virus propagates, generate semantically different
version of it!

• Different semantics only at immediate level of execution; higher-level semantics remain same

• How could you do this?

• Include with the virus a code rewriter:

• Inspects its own code, generates random variant, e.g.:

• Renumber registers

• Change order of conditional code

• Reorder operations not dependent on one another

• Replace one low-level algorithm with another

• Remove some do-nothing padding and replace with different do-nothing padding (“chaff”)

• Can be very complex, legit code … if it’s never called!

 48

Computer Science 161 Fall 2020 Weaver

When ready to propagate,
virus invokes a randomized
rewriter to construct new but
semantically equivalent code
(including the rewriter)

}
!

Metamorphic Propagation

 49

Main Virus Code

R
ew

riter
}

!

(Main Virus Code)'

R
ew

riter'

(Main Virus Code)''

R
ew

riter''

Computer Science 161 Fall 2020 Weaver

Detecting Metamorphic Viruses?

• Need to analyze execution behavior

• Shift from syntax (appearance of instructions) to  

semantics (effect of instructions)

• Two stages: (1) AV company analyzes new virus to find behavioral signature; 
(2) AV software on end systems analyze suspect code to test for match to signature

• What countermeasures will the virus writer take?

• Delay analysis by taking a long time to manifest behavior

• Long time = await particular condition, or even simply clock time

• Detect that execution occurs in an analyzed environment and if so behave differently

• E.g., test whether running inside a debugger, or in a Virtual Machine

• Counter-countermeasure?

• AV analysis looks for these tactics and skips over them

• Note: attacker has edge as AV products supply an oracle
 50

Computer Science 161 Fall 2020 Weaver

Malcode Wars and the Halting Problem...

• Cyberwars are not won by solving the halting problem... 
Cyberwars are won by making some other poor sod solve the halting
problem!!!

• In the limit, it is undecidable to know "is this code bad?"

• Modern focus is instead "is this code new?"

• Use a secure cryptographic hash (so sha-256 not md5)

• Check hash with central repository:  

If not seen before, treat binary as inherently more suspicious

• Creates a bind for attackers:

• Don't make your code *morphic:  

Known bad signature detectors find it

• Make your code *morphic:  

It always appears as new and therefore inherently suspicious
 51

Computer Science 161 Fall 2020 Weaver

Creating binds is very powerful...

• You have a detector D for some bad behavior...

• So bad-guys come up with a way of avoiding the detector D

• So come up with a detection strategy for avoiding
detector D

• So to avoid this detector, the attacker must not try to avoid D

• When you can do it, it is very powerful!

 52

Computer Science 161 Fall 2020 Weaver

How Much Malware Is Out There?

• A final consideration re polymorphism and metamorphism:

• Presence can lead to mis-counting a single virus outbreak as instead

reflecting 1,000s of seemingly different viruses

• Thus take care in interpreting vendor statistics on malcode
varieties

• (Also note: public perception that huge malware populations exist is in the
vendors’ own interest)

 53

Computer Science 161 Fall 2020 Weaver

 54

Computer Science 161 Fall 2020 Weaver

Infection Cleanup

• Once malware detected on a system, how do we get rid of it?

• May require restoring/repairing many files

• This is part of what AV companies sell: per-specimen disinfection procedures

• What about if malware executed with adminstrator privileges?

• "Game over man, Game Over!"

• “Dust off and nuke the entire site from orbit. It’s the only way to be sure”

• i.e., rebuild system from original media + data backups

• Malware may include a rootkit: kernel patches to hide its
presence (its existence on disk, processes)

 55

- Aliens

Computer Science 161 Fall 2020 Weaver

Infection Cleanup, con’t

• If we have complete source code for system, we could
rebuild from that instead, couldn’t we?

• No!

• Suppose forensic analysis shows that virus introduced a

backdoor in /bin/login executable

• (Note: this threat isn’t specific to viruses; applies to any malware)

• Cleanup procedure: rebuild /bin/login from source …

 56

Computer Science 161 Fall 2020 Weaver

 57

/bin/login 
source code

Compiler

/bin/login 
executable

Regular compilation
process of building login
binary from source code

/bin/login 
source code

Compiler

/bin/login 
executable

Infected compiler
recognizes when it’s
compiling /bin/login
source and inserts extra
back door when seen

Computer Science 161 Fall 2020 Weaver

 58

No problem: first step,
rebuild the compiler so
it’s uninfected

Correct compiler 
source code

 Infected Compiler

Correct compiler 
executable

Reflections on Trusting Trust
Turing-Award Lecture, Ken Thompson, 1983

No amount of careful source-code
scrutiny can prevent this problem.
And if the hardware has a back door …

 Infected Compiler

 Infected Compiler

Oops - infected compiler
recognizes when it’s
compiling its own source
and inserts the infection!

Correct compiler 
source code

X

Computer Science 161 Fall 2020 Weaver

More On "Rootkits"

• If you control the operating system...

• You can hide extremely well

• EG, your malcode is on disk...

• So it will persist across reboots

• But if you try to read the disk...

• The operating system just says "Uhh, this doesn't exist!"

 59

Computer Science 161 Fall 2020 Weaver

Even More Places To 
Hide!
• In the BIOS/EFI Firmware!

• So you corrupt the BIOS which corrupts the OS...

• Really hard to find: 

Defense, only run cryptographically signed BIOS code as part of the Trusted
Base

• In the disk controller firmware!

• So the master boot record, when read on boot up corrupts the OS...

• But when you try to read the MBR later... It is just "normal"

• Again, defense is signed code: The Firmware will only load a signed operating

system

• Make sure the disk itself is not trusted!

 60

Computer Science 161 Fall 2020 Weaver

Robust Rootkit Detection: 
Detect the act of hiding...
• Do an "in-system" scan of the disk...

• Record it to a USB drive

• Reboot the system with trusted media

• So a known good operating system

• Do the same scan!

• If the scans are different, you found the rootkit!

• For windows, you can also do a "high/low scan" on the Registry:

• Forces the bad guy to understand the registry as well as Mark Russinovich (the guy behind Sysinternals

who's company Microsoft bought because he understood the Registry better than Microsoft's own
employees!)

• Forces a bind on the attacker:

• Hide and persist? You can be detected

• Hide but don't persist? You can't survive reboots!

 61

Computer Science 161 Fall 2020 Weaver

Which Means Proper Malcode Cleanup...

 62

