
Peyrin & Ryan
Summer 2020

CS 161
Computer Security Notes

Contact for corrections: Peyrin Kao (peyrin at berkeley.edu)

Disclaimer: These notes are still in beta and haven’t been thoroughly fact-checked. In
any factual dispute, all other course material takes precedence. Any feedback is welcome.

1 Intro to the Web
It would not be too much of a stretch to say that much of today’s world is built upon the
Internet. Many of the services that run on top of the Internet come with their own class
of vulnerabilities and defenses to match. In particular, we will be focusing on web security,
which covers a class of attacks that target web pages and web services.

1.1 URLs
Every resource (webpage, image, PDF, etc.) on the web is identified by a URL (Uniform
Resource Locator). A typical URL consists of three parts:

http://www.example.com/index.html

The protocol, http, tells your browser how to retrieve the resource. In this class, the only
two protocols you need to know are HTTP, which we will cover in the next section, and
HTTPS, which is a secure version of HTTP using TLS (refer to the networking unit for
more details).

The domain name, www.example.com, tells your browser which web server to contact to
retrieve the resource. Sometimes the domain name will also include a port number, such
as www.example.com:81, to distinguish between different applications running on the same
web server.

The path, index.html, tells your browser which page on the web server to request. The web
server uses the path to determine which page or resource should be returned to you.

Further reading : What is a URL?

2 HTTP
The protocol that powers the World Wide Web is the Hypertext Transfer Protocol, abbre-
viated as HTTP. It is the language that clients use to communicate with servers in order to
fetch resources and issue other requests. While we will not be able to provide you with a
full overview of HTTP, this section is meant to get you familiar with several aspects of the
protocol that are important to understanding web security.

Notes Summer 2020 1 of 14

https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_is_a_URL

2.1 The Request-Response Model
Fundementally, HTTP follows a request-response model, where clients (such as browsers)
must actively start a connection to the server and issue a request, which the server then
responds to. This request can be something like “Send me a webpage” or “Change the
password for my user account to foobar.” To the first example, the server would logically
respond with the contents of the web page, and to the second example, the response may
be something as simple as “Okay, I’ve changed your password.” The exact structure of these
requests will be covered in further detail in the next couple sections.

2.2 Structure of a Request
Below is a very simple HTTP request.

GET / HTTP/1.1

Host: squigler.com

Dnt: 1

The first line of the request contains the method of the request (GET), the path of the request
(/), and the protocol version (HTTP/1.1). This is an example of a GET request. Each line
after the first line is a request header. In this example, there are two headers, the DNT
header and the Host header. There are many HTTP headers defined in the HTTP spec
which are used to convey various pieces of information, but we will only be covering a couple
of them through this lab.

Here is another HTTP request:

POST /login HTTP/1.1

Host: squigler.com

Content-Length: 40

Content-Type: application/x-url-formencoded

Dnt: 1

username=alice@foo.com&password=12345678

Here, we have a couple more headers and a different request type: the POST request.

2.3 GET vs. POST
While there are quite a few methods for requests, the two types that we will focus on for
this course are GET requests and POST requests. GET requests are intended for “getting”
information from the server and generally do not change anything on the server’s end. POST
requests are intended for sending information to the server that somehow modifies its internal
state, such as adding a comment in a forum or changing your password.

Of note, only POST requests can contain a body in addition to request headers. Notice that
the body of the second example request contains the username and password that the user

Notes Summer 2020 2 of 14

alice is using to log in. While GET requests cannot have a body, it can still pass query
parameters via the URL itself. Such a request might look something like this:

GET /posts?search=security&sortby=popularity

Host: squigler.com

Dnt: 1

In this case, there are two query parameters, search and sortby, which have values of
security and popularity, respectively.

3 Elements of a Webpage
The HTTP protocol could only return plain text files, but to make the web more interesting,
we write webpages with three different languages that provide additional functionality.

3.1 HTML
HTML (Hypertext Markup Language) lets us create structured documents with paragraphs,
links, fillable forms, and embedded images, among other features. You are not expected to
know HTML syntax for this course, but some basics are useful for some of the attacks we
will cover.

Here are some examples of what HTML can do:

• Create a link to Google: Click me

• Embed a picture in the webpage:

• Include Javascript in the webpage: <script>alert(1)</script>

• Embed the CS161 webpage in the webpage: <iframe src="http://cs161.org"></iframe>

Frames pose a security risk, since the outer page is now including an inner page that may be
from a different, possibly malicious source. To protect against this, modern browsers enforce
frame isolation, which means the outer page cannot change the contents of the inner page,
and the inner page cannot change the contents of the outer page.

3.2 CSS
CSS (Cascading Style Sheets) lets us modify the appearance of an HTML page by using
different fonts, colors, and spacing, among other features. You are not expected to know
CSS syntax for this course.

3.3 Javascript
Javascript is a programming language that runs in your browser. It is a very powerful
language–in general, you can assume Javascript can arbitrarily modify any HTML or CSS

Notes Summer 2020 3 of 14

on a webpage. Webpages can include Javascript in their HTML to allow for dynamic features
such as interactive buttons.

Because Javascript is so powerful, modern web browsers typically run Javascript in a sandbox
so that any code from a webpage cannot access sensitive data on your computer.

4 Same-Origin Policy
Browsing multiple webpages poses a security risk. For example, if you have a malicious
website (www.evil.com) and Gmail (www.gmail.com) open, you don’t want the malicious
website to be able to access any sensitive emails or send malicious emails with your identity.

Modern web browsers defend against these attacks by enforcing the same-origin policy, which
isolates every webpage in your browser, except for when two webpages have the same origin.

4.1 Origins
The origin of a webpage is determined by its protocol, domain name, and port. For example,
the following URL has protocol http, domain name www.example.com, and port 81.

http://www.example.com/index.html

To check if two webpages have the same origin, the same-origin policy performs string match-
ing on the protocol, domain, and port. Two websites have the same origin if their protocols,
domains, and ports all match.

Some examples of the same origin policy:

• http://wikipedia.org/a/ and http://wikipedia.org/b/ have the same origin. The
port (http), domain (wikipedia.org), and port (none), all match. Note that the paths
are not checked in the same-origin policy.

• http://wikipedia.org and http://www.wikipedia.org do not have the same origin,
because the domains (wikipedia.org and www.wikipedia.org) are different.

• http://wikipedia.org and https://wikipedia.org do not have the same origin,
because the protocols (http and https) are different.

• http://wikipedia.org:81 and http://wikipedia.org:82 do not have the same ori-
gin, because the ports (81 and 82) are different.

If a port is not specified, the port defaults to 80. This means http://wikipedia.org has
the same origin as http://wikipedia.org:80, but it does not have the same origin as
http://wikipedia.org:81.

4.2 Exceptions
In general, the origin of a webpage is defined by its URL. However, there are a few exceptions
to this rule:

Notes Summer 2020 4 of 14

• Javascript runs with the origin of the page that loads it. For example, if you include
<script src="http://google.com/tracking.js></script> on http://cs161.org,
the script has the origin of http://cs161.org.

• Images have the origin of the page that loads it. For example, if you include
<image src="http://google.com/logo.jpg> on http://cs161.org, the image has
the origin of http://cs161.org.

• Frames have the origin of the URL where the frame is retrieved from, not the origin
of the website that loads it. For example, if you include
<iframe src="http://google.com"></iframe> on http://cs161.org, the frame has
the origin of http://google.com.

Javascript has a special function, postMessage, that allows webpages from different origins to
communicate with each other. However, this function only allows very limited functionality.

Further reading : Same-origin policy

5 SQL Injection
5.1 Code Injection
SQL injection is a special case of a more broad category of attacks called code injections.

As an example, consider a calculator website that accepts user input and calls eval in the
backend to perform the calculation. For example, if a user types 2+3 into the website, the
server will run eval(2+3) and return the result to the user.

If the web server is not careful about checking user input, an attacker could provide a
malicious input like

2+3); system("rm *.*"

When the web server plugs this into the eval function, the result looks like

eval(2+3); system("rm *.*")

If interpreted as code, this causes the web server to delete all its files!

The general idea behind these attacks is that a web server uses user input as part of the
code it runs. If the input is not properly checked, an attacker could create a special input
that causes unintended code to run on the server.

5.2 SQL Injection Example
Many modern web servers use SQL databases to store information such as user logins or
uploaded files. These servers often allow users to interact with the database through HTTP
requests.

For example, consider a website that stores a SQL table of course evaluations named evals:

Notes Summer 2020 5 of 14

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

id course rating

1 cs61a 4.5
2 cs61b 4.4
3 cs161 5.0

A user can make an HTTP GET request for a course rating through a URL:

http://www.berkeley.edu/evals?course=cs61a

To process this request, the server performs a SQL query to look up the rating corresponding
to the course the user requested:

SELECT rating FROM evals WHERE course = "cs61a"

Just like the code injection example, if the server does not properly check user input, an
attacker could create a special input that allows arbitrary SQL code to be run. Consider the
following malicious input:

garbage"; SELECT * FROM passwords WHERE username = "admin

When the web server plugs this into the SQL query, the resulting query looks like

SELECT rating FROM evals WHERE course = "garbage";

SELECT password FROM passwords WHERE username = "admin"

If interpreted as code, this causes the query to return the password for the admin user!

5.3 SQL Injection Strategies
Writing a malicious input that creates a syntactically valid SQL query can be tricky. Let’s
break down each part of the malicious input from the previous example:

• garbage is a garbage input to the intended query so that it doesn’t return anything.

• " closes the opening quote from the intended query. Without this closing quote, the
rest of our query would be treated as a string, not SQL code.

• ; ends the intended SQL query and lets us start a new SQL query.

• SELECT password FROM passwords WHERE username = "admin is the malicious SQL
query we want to execute. Note that we didn’t add a closing quote to "admin, because
the intended SQL query will automatically add a closing quote at the end of our input.

Consider another vulnerable SQL query. This time, we have a users table that contains the
username and password of every user.

When the web server receives a login request, it creates a SQL query by plugging in the
username and password from the request. For example, if you make a login request with
username alice and password password123, the resulting SQL query would be

SELECT username FROM users WHERE username = "alice"

AND password = "password123"

Notes Summer 2020 6 of 14

If the query returns more than 0 rows, the server registers a successful login.

Suppose we want to login to the server, but we don’t have an account, and we don’t know
anyone’s username. How might we achieve this using SQL injection?

First, in the username field, we should add a dummy username and a quote to end the
opening quote from the original query:

SELECT username FROM users WHERE username = "alice"

" AND password = " "

Next, we need to add some SQL syntax so that this query returns more than 0 rows (since
we don’t know if alice is a valid username). One trick for forcing a SQL query to always
return something is to add some logic that always evaluates to true, such as OR 1=1:

SELECT username FROM users WHERE username = "alice" OR 1=1

" AND password = " "

Next, we have to add some SQL so that the rest of the query doesn’t throw a syntax error.
One way of doing this is to add a semicolon (ending the previous query) and write a dummy
query that matches the remaining SQL:

SELECT username FROM users WHERE username = "alice" OR 1=1;

SELECT username FROM users WHERE username = "alice" AND password = " "

The second query might not return anything, but the first query will return a nonzero
number of entries, which lets us perform a login. The last step is to add some garbage as
the password:

SELECT username FROM users WHERE username = "alice" OR 1=1;

SELECT username FROM users WHERE username = "alice" AND password = "garbage"

Thus, our malicious username and password should be

username = alice" OR 1=1; SELECT username FROM users WHERE username = "alice

password = garbage

Another trick to make SQL injection easier is the -- syntax, which starts a comment in SQL.
This tells SQL to ignore the rest of the query as a comment.

In our previous example, we can instead start a comment to ignore parts of the query we
don’t want to execute:

SELECT username FROM users WHERE username = "alice" OR 1=1

--" AND password = "garbage"

Thus, another malicious username and password is

username = alice" OR 1=1--

password = garbage

Further reading : SQL Injection Attacks by Example

Notes Summer 2020 7 of 14

http://www.unixwiz.net/techtips/sql-injection.html

5.4 Defense: Escape Inputs
One way of defending against SQL injection is to escape any potential input that could be
used in an attack. Escaping a character means that you tell SQL to treat this character as
part of the string, not actual SQL syntax.

For example, the quote " is used to denote the end of a string in SQL. However, the escaped
quote ¨ is treated as a literal quote character in SQL, and it does not cause the current
string to end.

By properly replacing characters with their escaped version, malicious inputs such as the
ones we’ve been creating will be treated as strings, and the SQL parser won’t try to run
them as actual SQL commands.

For example, in the previous exploit, if the server replaces all instances of the quote " and
the dash - with escaped versions, the SQL parser will see

SELECT username FROM users WHERE username = "alice\" OR 1=1\-\-"
AND password = "garbage"

The escaped quote won’t cause the username string to end, and the escaped dashes won’t
cause a comment to be created. The parser will try to look up someone with a username
alice" OR 1=1-- and find nothing.

However, we have to be careful with escaping. If an attacker inputs a backslash followed by
a quote \", the escaper might escape the quote and give the input \\" to the SQL parser.
The parser will treat the two backslashes \\ as an escaped backslash, and the quote won’t
be escaped!

The key takeaway here is that building a good escaper can be tricky, and there are many
edge cases to consider.

5.5 Defense: Parameterized SQL/Prepared Statements
A better defense against SQL injection is to use parameterized SQL or prepared statements.
This type of SQL compiles the query first, and then plugs in user input after the query
has already been interpreted by the SQL parser. Because the user input is added after the
query is compiled and interpreted, there is no way for any attacker input to be treated as
SQL code. Parameterized SQL prevents all SQL injections attacks, so it is the best defense
against SQL injection!

In practice, most modern SQL libraries support parameterized SQL and prepared statements.

Further reading : OWASP Cheat Sheet on SQL Injection

6 Cross-Site Scripting (XSS)
XSS is a class of attacks where an attacker injects malicious Javascript onto a webpage.
When a victim user loads the webpage, the user’s browser will run the malicious Javascript.

Notes Summer 2020 8 of 14

https://owasp.org/www-community/attacks/SQL_Injection

XSS attacks are powerful because they subvert the same-origin policy. Normally, an at-
tacker can only run Javascript on websites they control (such as http://evil.com), so
their Javascript cannot affect websites with origins different from http://evil.com. How-
ever, if the attacker can inject Javascript into http://google.com, then when a user loads
http://google.com, their browser will run the attacker’s Javascript with the origin of
http://google.com.

There are two main categories of XSS attacks: stored XSS and reflected XSS.

6.1 Stored XSS
In a stored XSS attack, the attacker finds a way to persistently store malicious Javascript on
the web server. When the victim loads the webpage, the web server will load this malicious
Javascript and display it to the user.

A classic example of stored XSS is a Facebook post. When a user makes a Facebook post,
the contents of the post are stored on Facebook’s servers, so that other users can load their
friends’ posts. If Facebook doesn’t properly check user inputs, an attacker could make a
post that says

<script>alert("XSS attack!")</script>

This post is now stored in Facebook’s servers. If another user loads the attacker’s posts,
they will receive an HTML page with this script on it, and the browser will run the script
and trigger a pop-up that says XSS attack!

6.2 Reflected XSS
In a reflected XSS attack, the attacker finds a vulnerable webpage where the server receives
user input in an HTTP request and displays the user input in the response.

A classic example of reflected XSS is a Google search. When you make an HTTP GET
request for a Google search, such as https://www.google.com/search?&q=cs161, the re-
turned webpage with search results will include something like

You searched for: cs161

If Google does not properly check user input, an attacker could create a malicious URL
https://www.google.com/search?&q=<script>alert("XSS attack!")</script>. When
the victim loads this URL, Google will return

You searched for: <script>alert("XSS attack!")</script>

The victim’s browser will run the script and trigger a pop-up that says XSS attack!

6.3 Defense: Sanitize Input
A good defense against XSS is checking for malicious input that might cause Javascript
to run, such as <script> tags. However, it is very difficult to write a good detector that

Notes Summer 2020 9 of 14

catches all XSS attacks. For example, the following input causes Javascript to run without
ever using <script> tags:

Just like SQL input escaping, sanitizing potentially dangerous input can be very tricky. For
example, consider an escaper that searches for all instances of <script> and </script> and
removes them. An attacker could provide this malicious input:

<scr<script>ipt>alert("XSS attack!")</scr<script>ipt>

After the escaper removes the two <script> tags it sees, the result is <script>alert("XSS
attack!")</script>, and the attacker can still execute Javascript!

Another way to escape input is to replace potentially dangerous characters with their HTML
encoding. For example, the less than (<) and greater than (>) signs are encoded as < and
>, respectively. These encodings cause less than and greater than signs to display on the
webpage, without being interpreted as HTML.

6.4 Defense: Content Security Policy
Another XSS defense is using a content security policy (CSP) that specifies a list of allowed
domains where scripts can be loaded from. For example, cs161.org might allow scripts that
are loaded from *.cs161.org or *.google.com and disallow all other scripts, including any
inline scripts that are injected by the attacker.

CSPs are defined by a web server and enforced by a browser. In the HTTP response, the
server attaches a Content-Security-Policy header, and the browser checks any scripts
against the header.

: OWASP Cheat Sheet on XSS

7 Cookies and Session Management
HTTP is a stateless protocol, which means each request and response is independent from
all other requests and responses. However, many features on the web require maintaining
some form of state. For example, when you log into your email account, you can stay logged
in across many requests and responses. If you enable dark mode on a website and make
subsequent requests to the website, you want the pages returned to have a dark background.
If you’re browsing an online shopping website, you want the items in your cart to be saved
across many requests and responses. Browser and servers store HTTP cookies to support
these features.

At a high level, you can think of cookies as pieces of data stored in your browser. When
you make a request to enable dark mode or add an item to your shopping cart, the server
sends a response with a Set-Cookie header, which tells your browser to store a new cookie.
These cookies encode state that should persist across multiple requests and responses, such
as your dark mode preference or a list of items in your shopping cart. In future requests,

Notes Summer 2020 10 of 14

https://owasp.org/www-community/attacks/xss/

your browser will automatically attach the relevant cookies to a request and send it to the
web server. The additional information in these cookies helps the web server customize its
response.

7.1 Cookie Attributes
Every cookie is a name-value pair. For example, a cookie darkmode=true has name darkmode
and value true.

For security and functionality reasons, we don’t want the browser to send every cookie in
every request. A user might want to enable dark mode on one website but not on another
website, so we need a way to only send certain cookies to certain URLs. Also, as we’ll see
later, cookies may contain sensitive login information, so sending all cookies in all requests
poses a security risk. These additional cookie attributes help the browser determine which
cookies should be attached to each request.

• The Domain and Path attributes tell the browser which URLs to send the cookie to.
See the next section for more details.

• The Secure attribute tells the browser to only send the cookie over a secure HTTPS
connection.

• The HttpOnly attribute prevents Javascript from accessing and modifying the cookie.

• The expires field tells the browser when to stop remembering the cookie.

7.2 Cookie Policy: Domain and Path
The browser sends a cookie to a given URL if the cookie’s Domain attribute is a domain-suffix
of the URL domain, and the cookie’s Path attribute is a prefix of the URL path. In other
words, the URL domain should end in the cookie’s Domain attribute, and the URL path
should begin with the cookie’s Path attribute.

For example, a cookie with Domain=example.com and Path=/some/path will be included on
a request to http://foo.example.com/some/path/index.html, because the URL domain
ends in the cookie domain, and the URL path begins with the cookie path.

7.3 Cookie Policy: Setting Domain and Path
For security reasons, we don’t want a malicious website evil.com to be able to set a cookie
with domain bank.com, since this would allow an attacker to affect the functionality of the
legitimate bank website. To prevent this, the cookie policy specifies that when a server sets
a cookie, the cookie’s domain must be a URL suffix of the server’s URL. In other words, for
the cookie to be set, the server’s URL must end in the cookie’s Domain attribute. Otherwise,
the browser will reject the cookie.

For example, a webpage with domain eecs.berkeley.edu can set a cookie with domain
eecs.berkeley.edu or berkeley.edu, since the webpage domain ends in both of these

Notes Summer 2020 11 of 14

domains.

This policy has one exception: cookies cannot have domains set to a top-level domain, such
as .edu or .com, since these are too broad and pose a security risk. If evil.com could set
cookies with domain .com, the attacker would have the ability to affect all .com websites,
since this cookie would be sent to all .com websites.

The cookie policy allows a server to set the Path attribute without any restrictions.

Further reading : Cookies

7.4 Session Management
Cookies are often used to keep users logged in to a website over many requests and responses.
When a user sends a login request with a valid username and password, the server will
generate a new session token and send it to the user as a cookie. In future requests, the
browser will attach the session token cookie and send it to the server. The server maintains a
mapping of session tokens to users, so when it receives a request with a session token cookie,
it can look up the corresponding user and customize its response accordingly.

Secure session tokens should be random and unpredictable, so an attacker cannot guess
someone else’s session token and gain access to their account. Many servers also set the
HttpOnly and Secure flags on session tokens to protect them from being accessed by XSS
vulnerabilities or network attackers, respectively.

It is easy to confuse session tokens and cookies. Session tokens are the values that the
browser sends to the server to associate the request with a logged-in user. Cookies are how
the browser stores and sends session tokens to the server. Cookies can also be used to save
other state, as discussed earlier. In other words, session tokens are a special type of cookie
that keep users logged in over many requests and responses.

8 Cross-Site Request Forgery (CSRF)
Using cookies and session tokens to keep a user logged in has some associated security risks.
In a cross-site request forgery (CSRF) attack, the attacker forces the victim to make an
unintended request. The victim’s browser will automatically attach the session token cookie
to the unintended request, and the server will accept the request as coming from the victim.

For example, suppose a website has an endpoint http://example.com/logout. To log out,
a user makes a GET request to this URL with the appropriate session token attached, and
the server checks the session token and performs the logout. If an attacker can trick a victim
into clicking this link, the victim will be logged out of the website without their knowledge.

CSRF attacks can also be executed on URLs with more malicious actions. For example,
a GET request to https://bank.com/transfer?amount=100&recipient=mallory with a
valid session token might send $100 to Mallory. An attacker could send an email to the
victim with the following HTML snippet:

Notes Summer 2020 12 of 14

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

This will cause the browser to try and fetch an image from the malicious URL by making a
GET request. Because the browser automatically attaches the session token to the request,
this causes the victim to unknowingly send $100 to Mallory.

It is usually bad practice to have HTTP GET endpoints that can change server state, so this
type of CSRF attack is less common in practice. However, CSRF attacks are still possible
over HTTP POST requests. HTML forms are a common example of a web feature that
generates HTTP POST requests. The user fills in the form fields, and when they click
the Submit button, the browser generates a POST request with the filled-out form fields.
Consider the following HTML snippet on an attacker’s webpage:

<form name=evilform action=https://bank.com/transfer>

<input name=amount value=100>

<input name=recipient value=mallory>

</form>

<script>document.evilform.submit();</script>

When the victim visits the attacker’s website, this HTML snippet will cause the victim’s
browser to make a POST request to https://bank.com/transfer with form input values
that transfer $100 to Mallory. Like before, the victim’s browser automatically attaches the
session token to the request, so the server accepts this POST request as if it was from the
victim.

8.1 Defense: CSRF Token
A good defense against CSRF attacks is to include a CSRF token on webpages. When
a legitimate user loads a webpage from the server with a form, the server will randomly
generate a CSRF token and include it as an extra field in the form. (In practice, this field
often has a hidden attribute set so that it’s only visible in the HTML, so users don’t see
random strings every time they submit a form.) When the user submits the form, the form
will include the CSRF token, and the server will check that the CSRF token is valid. If the
CSRF token is invalid or missing, the server will reject the request.

To implement CSRF tokens, the server needs to generate a new CSRF token every time
a user requests a form. CSRF tokens should be random and unpredictable so an attacker
cannot guess the CSRF token. The server also needs to maintain a mapping of CSRF tokens
to session tokens, so it can validate that a request with a session token has the correct
corresponding CSRF token. This may require the server to store a large amount of state if
it expects heavy traffic.

If an attacker tries the attack in the previous section, the malicious form they create on
their website will no longer contain a valid CSRF token. The attacker could try querying
the server for a CSRF token, but it would not properly map to the victim’s session token,
because the victim never requested the form legitimately.

Notes Summer 2020 13 of 14

8.2 Defense: Referer Validation
Another way to defend against CSRF tokens is to check the Referer field in the HTTP header.
When a browser issues an HTTP request, it includes a Referer header which indicates which
URL the request was made from. For example, if a user fills out a form from a legitimate
bank website, the Referer header will be set to bank.com, but if the user visits the attacker’s
website and the attacker fills out a form and submits it, the Referer header will be set to
evil.com. The server can check the Referer header on each request and reject any requests
that have untrusted or suspicious Referer headers.

Referer validation is a good defense if it is included on every request, but it poses some
problems if someone submits a request with the Referer header left blank. If a server accepts
requests with blank Referer headers, it may be vulnerable to CSRF attacks, but if a server
rejects requests with blank Referer headers, it may reduce functionality for some users.

In practice, Referer headers may be removed by the browser, the operating system, or a
network monitoring system for privacy issues. For example, if you click on a link to visit a
website from a Google search, the website can know what Google search you made to visit
its website from the Referer header. Some modern browsers also have options that let users
disable sending the Referer header on all requests. Because not all requests are guaranteed
to have a Referer header, it is usually only used as a defense-in-depth strategy in addition
to CSRF tokens, instead of as the only defense against CSRF attacks.

Further reading : OWASP Cheat Sheet on CSRF

Notes Summer 2020 14 of 14

https://owasp.org/www-community/attacks/csrf

	Intro to the Web
	URLs

	HTTP
	The Request-Response Model
	Structure of a Request
	GET vs. POST

	Elements of a Webpage
	HTML
	CSS
	Javascript

	Same-Origin Policy
	Origins
	Exceptions

	SQL Injection
	Code Injection
	SQL Injection Example
	SQL Injection Strategies
	Defense: Escape Inputs
	Defense: Parameterized SQL/Prepared Statements

	Cross-Site Scripting (XSS)
	Stored XSS
	Reflected XSS
	Defense: Sanitize Input
	Defense: Content Security Policy

	Cookies and Session Management
	Cookie Attributes
	Cookie Policy: Domain and Path
	Cookie Policy: Setting Domain and Path
	Session Management

	Cross-Site Request Forgery (CSRF)
	Defense: CSRF Token
	Defense: Referer Validation

