
Weaver
Fall 2020

CS 161
Computer Security Discussion 3

Cryptography I
Question 1 Block Cipher and Entropy Potpourri ()

(a) Explain how an adversary can always win the IND-CPA game against a determin-
istic encryption algorithm. Given identical plaintext, a deterministic encryption
algorithm will produce identical ciphertext.
(Corollary: AES block cipher and ECB mode of operation, which are deterministic,
are IND-CPA insecure.)

Solution: An adversary can provide two plaintexts A and B to be encrypted.
Adversary gets back X, which is an encryption of either A or B. Then, the
adversary requests an encryption of A again and compares it with X. If two are
the same, X is the encryption of A, and vice versa.

(b) Why does a block cipher need to be a permutation?

Solution: A block cipher needs to be one-to-one so that it is invertible, and
if it wasn’t a permutation then more than one input could result in the same
output which means that a ciphertext couldn’t be decrypted.

(c) What are good possible sources of entropy for key generation for a block cipher?
Assume a hardware noise generator is a good source of entropy on it’s own (these
usually incorporate physical sources for randomness).

• The computer’s clock time (assumed in seconds)

• The Parent Process ID ⊕ my Process ID ⊕ time

• Hardware noise generator ⊕ a vector of 0s

• Hardware noise generator ⊕ time

• Hardware noise generator ∧ a vector of 0s

• Hardware noise generator ∧ time

(⊕ and ∧ denote bitwise XOR and AND respectfully)

Page 1 of 5

Solution:

• No, a computer clock counts the number of seconds from a given point in
time (traditionally the epoch of unix), and because of this, the entropy of
such a request is dramatically reduced if you can narrow down the window
of time when such a call was made. If you are able to narrow down the
year in which a call to time was made, the entropy is reduced to 25 bits,
narrowing it down to a month is 22 bits, and narrowing it down to the
day is 17 bits.

• No, time as outlined above is not a sufficient source of entropy and with
the addition of process IDs remains insufficient. This example was actually
inspired by a previous implementation of Netscape’s SSL and you can read
up on the paper published on its insecurity by our very own David Wagner.
https://people.eecs.berkeley.edu/~daw/papers/ddj-netscape.html

• Yes, given a proper source of entropy we can still combine it with a weak
source without losing this randomness. This does rely on the fact that we
are using a one-to-one function such as XOR, otherwise if we had instead
used a bitwise AND or OR, we would have been removing the entropy
provided by the hardware.

• Yes, given a proper source of entropy we can still combine it with a weak
source without losing this randomness. This does rely on the fact that we
are using a one-to-one function such as XOR, otherwise if we had instead
used a bitwise AND or OR, we would have been removing the entropy
provided by the hardware.

• No, the output will always be the 0 vector

• No, even though the HNG is a good source of entropy, the bitwise AND
removes entropy since it is not injective. Essentially, the output will be
biased towards 0

Discussion 3 Page 2 of 5 CS 161 – Fall 2020

https://people.eecs.berkeley.edu/~daw/papers/ddj-netscape.html

Question 2 PRNGs and stream ciphers ()

(a) Suppose you have access to function R that takes a 128-bit seed s and integers n,m
as input. R outputs the nth (inclusive) through mth (exclusive) bits produced by
the a pseudorandom generator PRNG when it is seeded with seed s.

R(s, n,m) = PRNG(s)[n : m]

Use R to make a secure symmetric-key encryption scheme. That is, define the key
generation algorithm, the encryption algorithm, and the decryption algorithm.

Solution:

• Key generation. Generate a random 128-bit key K ∈ {0, 1}128.

• Encryption. Let j be the latest index we have used from our PRNG. We
start with j := 0 and maintain the state of j for subsequent encryptions.
Let L be the number of bits in message M . Then,

E(K,M) = R(K, j, j + L)⊕M.

After every encryption, j must be incremented by L.

• Decryption. Define j and L as above. We have

D(K,C) = R(K, j, j + L)⊕ C.

(b) Explain how using a block cipher in counter (CTR) mode is similar to the scenario
described above.

Solution: CTR mode is similar to a stream cipher mode. It uses the key to
generate a pseudo-random stream of bits. This random stream is then XORed
with the message to form the ciphertext.

In CTR mode, there is no computational dependency between the rounds, which
enables an efficient parallel computation. Additionally, the IV is replaced with
a nonce and counter.

Nonce and counter are encrypted with key K to produce the random stream
that for a given element of the plaintext Pi is XORed with Pi to produce the
ciphertext Ci. In summary, CTR is defined as:

Ri := E(K,Nonce||i)
Ci := Pi ⊕Ri

Pi := Ci ⊕Ri

where || denotes concatenation.

Discussion 3 Page 3 of 5 CS 161 – Fall 2020

Question 3 Block cipher security ()
As a reminder, the cipher-block chaining (CBC) mode of operation works like this:

The output of the encryption is the ciphertext concatenated with the IV that was used.

(a) What happens if two messages are encrypted with the same key and nonce? What
can the attacker learn about the two messages just by looking at their ciphertexts?

Solution: If IV is reused in AES-CBC, the attacker can determine if two mes-
sages have identical prefix, up to but not including the first block containing
the difference. This is because the nth plaintext block affects the input to nth
input to the block cipher, and any difference in the plaintext block results in a
completely different block cipher output.

When we use non-repeating IVs for CBC-mode, even if we encrypt the same
message multiple times, CBC-mode will generate distinct and random-looking
ciphertexts each time.

(b) If the random number generator used for IV creation is sabotaged, an attacker
may be able to predict IVs used to encrypt future data. If this is the case, can an
attacker win the IND-CPA game against AES-CBC mode of operation?

Specifically, an attacker provides one-block long plaintext messages P1 and P2 to
an oracle, which encrypts one of the plaintexts using IV1.

Can an attacker determine the plaintext used for the first encryption by requesting
encryptions of a few chosen plaintexts?

Assume the attacker knows IVn for any n.

Discussion 3 Page 4 of 5 CS 161 – Fall 2020

Solution: Yes. Mallory asks Alice for the encryption of m1⊕ IV1⊕ IV2. When
Alice runs CBC, the output will be the block cipher output for m1 ⊕ IV1. But
that’s just C1! So for CBC an IV must also be unpredictable, which is to say it
has to be kept secret until after the encryption is done.

Thus, IVs for CBC-mode encryption have two necessary criteria: (1) they must
not repeat across messages and (2) they must be unpredictable. It turns out we
can satisfy both criteria (with high probability) if we just generate a random
IV for every message we encrypt.

Discussion 3 Page 5 of 5 CS 161 – Fall 2020

