Weaver C5 161 Disonesion &
Fall 2020 Computer Security 15CUSSION

Web Security [1

Question 1 Session Fization O
A session cookie is used by most websites in order to manage user logins. When the user
logs in, the server sends a randomly-generated session cookie to the user’s browser. The
server also stores the cookie value in a database along with the corresponding username.
The user’s browser sends the session cookie to the server whenever the user loads any
page on the site. The server then looks the session cookie up in the database and retrieves
the corresponding username. Using this, the server can know which user is logged in.

Some web application frameworks allow cookies to be set by the URL. For example,
visiting the URL

http://foobar.edu/page.html?sessionid=42.
will result in the server setting the sessionid cookie to the value “42”.

(a) Can you spot an attack on this scheme?

(b) Suppose the problem you spotted has been fixed as follows: foobar.edu now estab-
lishes new sessions with session IDs based on a hash of the tuple (username, time
of connection). Is this secure? If not, what would be a better approach?

Page 1 of 3

Question 2 Cross-Site Request Forgery (CSRF) O
In a CSRF attack, a malicious user is able to take action on behalf of the victim. Consider
the following example. Mallory posts the following in a comment on a chat forum:

Of course, Patsy-Bank won'’t let just anyone request a transaction on behalf of any given
account name. Users first need to authenticate with a password. However, once a user
has authenticated, Patsy-Bank associates their session ID with an authenticated session
state.

(a) Explain what could happen when Alice visits the chat forum and views Mallory’s
comment.

(b) Patsy-Bank decides to check that the Referer header contains patsy-bank.com. Will
the attack above work? Why or why not?

(c) Describe one way Mallory can modify her attack to always get around this check

(d) Recall that the Referer header provides the full URL. HTTP additionally offers an
Origin header which acts the same as the Referer but only includes the website
domain, not the entire URL. Why might the Origin header be preferred?

(e) Almost all browsers support an additional cookie field SameSite. When SameSite=strict,
the browser will only send the cookie if the requested domain and origin domain
correspond to the cookie’s domain. Which CSRF attacks will this stop? Which ones
won’t it stop? Give one big drawback of setting SameSite=strict.

Discussion 8 Page 2 of 3 CS 161 — Fall 2020

Question 3 CSRF++ O
Patsy-Bank learned about the CSRF flaw on their site described above. They hired a
security consultant who helped them fix it by adding a random CSRF token to the
sensitive /transfer request. A valid request now looks like:

https://patsy-bank.com/transfer?to=bob&amount=10&token=<random>
The CSRF token is chosen randomly, separately for each user.

Not one to give up easily, Mallory starts looking at the welcome page. She loads the
following URL in her browser:

https://patsy-bank.com/welcome?name=<script>alert("Jackpot!");</script>

When this page loaded, Mallory saw an alert pop up that says “Jackpot!”. She smiles,
knowing she can now force other bank customers to send her money.

(a) What kind of attack is the welcome page vulnerable to? Provide the name of the
category of attack.

(b) Mallory plans to use this vulnerability to bypass the CSRF token defense. She’ll
replace the alert("Jackpot!"); with some carefully chosen JavaScript. What
should her JavaScript do?

(c) patsy-bank.com sets SameSite=strict for all of its cookies. Does this stop the
attack from part (b)? Assume the welcome page does not require a user to be logged
in.

(d) Mallory wants to attack Bob, a customer of Patsy-Bank. Name one way that Mallory
could try to get Bob to click on a link she constructed.

Discussion 8 Page 3 of 3 CS 161 — Fall 2020

